B.1.26 Demonstrate how the genetic information in DNA molecules provides instructions for assembling protein molecules and that this is virtually the same mechanism for all life forms.


Molecules and Cells

7.4.1Explain that similarities among organisms are found in external & internal anatomical features, including specific characteristics at the cellular level, such as the number of chromosomes. Understand that these similarities are used to classify organisms since they may be used to infer the degree of relatedness among organisms.

7.4.4 Explain that the basic functions of organisms, such as extracting energy from food & getting rid of wastes, are carried out within the cell & understand that the way which cells function is similar in all organisms.

B1.1Recognize that and explain how the many cells in an individual can be very different from one another, even though they are all descended from a single cell and thus have essentially identical genetic instructions. Understand that different parts of the genetic instructions are used in different types of cells and are influenced by the cellÕs environment and past history.

B.1.4 Understand and describe that the work of the cell is carried out by the many different types of molecules it assembles, such as proteins, lipids, carbohydrates, and nucleic acids.

B.1.8 Understand and describe that all growth and development is a consequence of an increase in cell number, cell size, and/or cell products. Explain that cellular differentiation results from gene expression and/or environmental influence. Differentiate between mitosis and meiosis.

Developmental and Organismal Biology


B.1.23 Understand that and describe how inserting, deleting, or substituting DNA segments can alter a gene. Recognize that an altered gene may be passed on to every cell that develops from it, and that the resulting features may help, harm, or have little or no effect on the offspringÕs success in its environment.


B.1.30 Understand and explain that molecular evidence substantiates the anatomical evidence for evolution and provides additional detail about the sequence in which various lines of descent branched off from one another.

B.1.34 Explain that evolution builds on what already exists, so the more variety there is, the more there can be in the future. Recognize, however, that evolution does not necessitate long-term progress in some set direction.

B.1.35 Explain that the degree of kinship between organisms or species can be estimated from the similarity of their DNA sequences, which often closely matches their classification based on anatomical similarities. Know that amino acid similarities also provide clues to this kinship.




Previous Indicator       Back to Standards       Next Indicator