B.1.28 Illustrate that the sorting and recombination of genes in sexual reproduction results in a great variety of possible gene combinations from the offspring of any two parents. Recognize that genetic variation can occur from such processes as crossing over, jumping genes, and deletion and duplication of genes.

 

Molecules and Cells

7.4.1Explain that similarities among organisms are found in external & internal anatomical features, including specific characteristics at the cellular level, such as the number of chromosomes. Understand that these similarities are used to classify organisms since they may be used to infer the degree of relatedness among organisms.

7.4.3 Explain how, in sexual reproduction, a single specialized cell from a female merges with a specialized cell from a male & this fertilized egg carries genetic information from each parent & multiplies to form the complete organism.

B1.1Recognize that and explain how the many cells in an individual can be very different from one another, even though they are all descended from a single cell and thus have essentially identical genetic instructions. Understand that different parts of the genetic instructions are used in different types of cells and are influenced by the cellÕs environment and past history.

B.1.8 Understand and describe that all growth and development is a consequence of an increase in cell number, cell size, and/or cell products. Explain that cellular differentiation results from gene expression and/or environmental influence. Differentiate between mitosis and meiosis.

Developmental and Organismal Biology

B.1.11 Describe that through biogenesis all organisms begin their life cycles as a single cell and that in multicellular organisms, successive generations of embryonic cells form by cell division.

It is also necessary to consider how genes influence morphology.

Genetics

8.4.7 Recognize & explain that small genetic differences between parents & offspring can accumulate in successive generations so that descendants are very different from their ancestors.

B.1.21 Understand and explain that the information passed from parents to offspring is transmitted by means of genes which are coded in DNA molecules.

B.1.22 Understand and explain the genetic basis for MendelÕs laws of segregation and independent assortment.

B.1.23 Understand that and describe how inserting, deleting, or substituting DNA segments can alter a gene. Recognize that an altered gene may be passed on to every cell that develops from it, and that the resulting features may help, harm, or have little or no effect on the offspringÕs success in its environment.

B.1.24 Explain that gene mutations can be caused by such things as radiation and chemicals. Understand that when they occur in sex cells, the mutations can be passed on to offspring; if they occur in other cells, they can be passed on to descendant cells only.

B.1.26 Demonstrate how the genetic information in DNA molecules provides instructions for assembling protein molecules and that this is virtually the same mechanism for all life forms.

B.1.29 Understand that and explain how the actions of genes, patterns of inheritance, and the reproduction of cells and organisms account for the continuity of life, and give examples of how inherited characteristics can be observed at molecular and whole-organism levels - in structure, chemistry, or behavior.

Evolution

8.4.9 Recognize & describe that fossil evidence is consistent with the idea that human beings evolved from earlier species.

It is also necessary to recognize that fossils show variation among individuals just as modern organisms do, reflecting similar genetic mechanisms.

B.1.30 Understand and explain that molecular evidence substantiates the anatomical evidence for evolution and provides additional detail about the sequence in which various lines of descent branched off from one another.

B.1.31  Describe how natural selection provides the following mechanism for evolution: Some variation in heritable characteristics exists within every species, and some of these characteristics give individuals an advantage over others in surviving and reproducing. Understand that the advantaged offspring, in turn, are more likely than others to survive and reproduce. Also understand that the proportion of individuals in the population that have advantageous characteristics will increase.

B.1.32 Explain how natural selection leads to organisms that are well suited for survival in particular environments, and discuss how natural selection provides scientific explanation for the history of life on Earth as depicted in the fossil record and in the similarities evident within the diversity of existing organisms.

B.1.34 Explain that evolution builds on what already exists, so the more variety there is, the more there can be in the future. Recognize, however, that evolution does not necessitate long-term progress in some set direction.

B.1.35 Explain that the degree of kinship between organisms or species can be estimated from the similarity of their DNA sequences, which often closely matches their classification based on anatomical similarities. Know that amino acid similarities also provide clues to this kinship.

Ecology

8.4.8 Describe how environmental conditions affect the survival of individual organisms & how entire species may prosper in spite of the poor survivability or bad fortune of individuals.

B.1.43 Understand that and describe how organisms are influenced by a particular combination of living and nonliving components of the environment.

B.1.45 Recognize that and describe how the physical or chemical environment may influence the rate, extent, and nature of the way organisms develop within ecosystems.

Historical

 

Previous Indicator       Back to Standards       Next Indicator