B.1.29 Understand that and explain how the actions of genes, patterns of inheritance, and the reproduction of cells and organisms account for the continuity of life, and give examples of how inherited characteristics can be observed at molecular and whole-organism levels - in structure, chemistry, or behavior.

 

Molecules and Cells

7.4.1Explain that similarities among organisms are found in external & internal anatomical features, including specific characteristics at the cellular level, such as the number of chromosomes. Understand that these similarities are used to classify organisms since they may be used to infer the degree of relatedness among organisms.

7.4.3 Explain how, in sexual reproduction, a single specialized cell from a female merges with a specialized cell from a male & this fertilized egg carries genetic information from each parent & multiplies to form the complete organism.

B1.1Recognize that and explain how the many cells in an individual can be very different from one another, even though they are all descended from a single cell and thus have essentially identical genetic instructions. Understand that different parts of the genetic instructions are used in different types of cells and are influenced by the cellÕs environment and past history.

B.1.4 Understand and describe that the work of the cell is carried out by the many different types of molecules it assembles, such as proteins, lipids, carbohydrates, and nucleic acids.

B.1.7 Explain that complex interactions among the different kinds of molecules in the cell cause distinct cycles of activities, such as growth and division. Note that cell behavior can also be affected by molecules from other parts of the organism, such as hormones.

B.1.8 Understand and describe that all growth and development is a consequence of an increase in cell number, cell size, and/or cell products. Explain that cellular differentiation results from gene expression and/or environmental influence. Differentiate between mitosis and meiosis.

Developmental and Organismal Biology

B.1.11 Describe that through biogenesis all organisms begin their life cycles as a single cell and that in multicellular organisms, successive generations of embryonic cells form by cell division.

B.1.19 Recognize and describe that metabolism consists of the production, modification, transport, and exchange of materials that are required for the maintenance of life.

Genetics

8.4.1 Differentiate between inherited traits, such as hair color or flower color, & acquired skills, such as manners.

8.4.2 Describe that in some organisms, such as yeast or bacteria, all genes come from a single parent, while in those that have sexes, typically half of the genes come from each parent.

8.4.3 Recognize/describe that new varieties of cultivated plants, such as corn & apples, & domestic animals, such as dogs & horses, have resulted from selective breeding for particular traits.

8.4.7 Recognize & explain that small genetic differences between parents & offspring can accumulate in successive generations so that descendants are very different from their ancestors.

B.1.21 Understand and explain that the information passed from parents to offspring is transmitted by means of genes which are coded in DNA molecules.

B.1.22 Understand and explain the genetic basis for MendelÕs laws of segregation and independent assortment.

B.1.23 Understand that and describe how inserting, deleting, or substituting DNA segments can alter a gene. Recognize that an altered gene may be passed on to every cell that develops from it, and that the resulting features may help, harm, or have little or no effect on the offspringÕs success in its environment.

B.1.24 Explain that gene mutations can be caused by such things as radiation and chemicals. Understand that when they occur in sex cells, the mutations can be passed on to offspring; if they occur in other cells, they can be passed on to descendant cells only.

B.1.26 Demonstrate how the genetic information in DNA molecules provides instructions for assembling protein molecules and that this is virtually the same mechanism for all life forms.

AND it is necessary to understand how genes influence the morphology of the organism.

Evolution

B.1.30 Understand and explain that molecular evidence substantiates the anatomical evidence for evolution and provides additional detail about the sequence in which various lines of descent branched off from one another.

Ecology

Historical

 

Previous Indicator       Back to Standards       Next Indicator