B.1.30 Understand and explain that molecular evidence substantiates the anatomical evidence for evolution and provides additional detail about the sequence in which various lines of descent branched off from one another.

 

Molecules and Cells

7.4.1Explain that similarities among organisms are found in external & internal anatomical features, including specific characteristics at the cellular level, such as the number of chromosomes. Understand that these similarities are used to classify organisms since they may be used to infer the degree of relatedness among organisms.

7.4.4 Explain that the basic functions of organisms, such as extracting energy from food & getting rid of wastes, are carried out within the cell & understand that the way which cells function is similar in all organisms.

7.4.5 Explain how food provides the fuel & the building material for all organisms.

7.4.6 Describe how plants use the energy from light to make sugars from carbon dioxide & water to produce food that can be used immediately or stored for later use.

7.4.7 Describe how organisms that eat plants break down the plant structures to produce the materials & energy that they need to survive, & in turn, how they are consumed by other organisms.

B1.1Recognize that and explain how the many cells in an individual can be very different from one another, even though they are all descended from a single cell and thus have essentially identical genetic instructions. Understand that different parts of the genetic instructions are used in different types of cells and are influenced by the cellÕs environment and past history.

B.1.3 Know and describe that within the cell are specialized parts for the transport of materials, energy capture and release, protein building, waste disposal, information feedback, and movement. In addition to these basic cellular functions common to all cells, understand that most cells in multicellular organisms perform some special functions that others do not.

B.1.4 Understand and describe that the work of the cell is carried out by the many different types of molecules it assembles, such as proteins, lipids, carbohydrates, and nucleic acids.

Developmental and Organismal Biology

B.1.13 Explain that some structures in the modern eukaryotic cell developed from early prokaryotes, such as mitochondria, and in plants, chloroplasts.

B.1.19 Recognize and describe that metabolism consists of the production, modification, transport, and exchange of materials that are required for the maintenance of life.

Genetics

8.4.3 Recognize/describe that new varieties of cultivated plants, such as corn & apples, & domestic animals, such as dogs & horses, have resulted from selective breeding for particular traits.

8.4.7 Recognize & explain that small genetic differences between parents & offspring can accumulate in successive generations so that descendants are very different from their ancestors.

B.1.21 Understand and explain that the information passed from parents to offspring is transmitted by means of genes which are coded in DNA molecules.

B.1.22 Understand and explain the genetic basis for MendelÕs laws of segregation and independent assortment.

B.1.23 Understand that and describe how inserting, deleting, or substituting DNA segments can alter a gene. Recognize that an altered gene may be passed on to every cell that develops from it, and that the resulting features may help, harm, or have little or no effect on the offspringÕs success in its environment.

B.1.24 Explain that gene mutations can be caused by such things as radiation and chemicals. Understand that when they occur in sex cells, the mutations can be passed on to offspring; if they occur in other cells, they can be passed on to descendant cells only.

B.1.26 Demonstrate how the genetic information in DNA molecules provides instructions for assembling protein molecules and that this is virtually the same mechanism for all life forms.

B.1.27 Explain that the similarity of human DNA sequences and the resulting similarity in cell chemistry and anatomy identify human beings as a unique species, different from all others. Likewise, understand that every other species has its own characteristic DNA sequence.

B.1.28 Illustrate that the sorting and recombination of genes in sexual reproduction results in a great variety of possible gene combinations from the offspring of any two parents. Recognize that genetic variation can occur from such processes as crossing over, jumping genes, and deletion and duplication of genes.

Evolution

8.4.9 Recognize & describe that fossil evidence is consistent with the idea that human beings evolved from earlier species.

B.1.31  Describe how natural selection provides the following mechanism for evolution: Some variation in heritable characteristics exists within every species, and some of these characteristics give individuals an advantage over others in surviving and reproducing. Understand that the advantaged offspring, in turn, are more likely than others to survive and reproduce. Also understand that the proportion of individuals in the population that have advantageous characteristics will increase.

B.1.32 Explain how natural selection leads to organisms that are well suited for survival in particular environments, and discuss how natural selection provides scientific explanation for the history of life on Earth as depicted in the fossil record and in the similarities evident within the diversity of existing organisms.

B.1.34 Explain that evolution builds on what already exists, so the more variety there is, the more there can be in the future. Recognize, however, that evolution does not necessitate long-term progress in some set direction.

B.1.35 Explain that the degree of kinship between organisms or species can be estimated from the similarity of their DNA sequences, which often closely matches their classification based on anatomical similarities. Know that amino acid similarities also provide clues to this kinship.

B.1.36 Trace the relationship between environmental changes and changes in the gene pool, such as genetic drift and isolation of sub-populations.

Ecology

Historical

 

Previous Indicator       Back to Standards       Next Indicator