B.1.4 Understand and describe that the work of the cell is carried out by the many different types of molecules it assembles, such as proteins, lipids, carbohydrates, and nucleic acids.

 

Molecules and Cells

7.4.5 Explain how food provides the fuel & the building material for all organisms.

7.4.6 Describe how plants use the energy from light to make sugars from carbon dioxide & water to produce food that can be used immediately or stored for later use.

7.4.7 Describe how organisms that eat plants break down the plant structures to produce the materials & energy that they need to survive, & in turn, how they are consumed by other organisms.

8.4.5 Explain that energy can be transferred from one form to another in living things.

8.4.6 Describe how animals get their energy from oxidizing their food & releasing some of this energy as heat.

B.1.2 Explain that every cell is covered by a membrane that controls what can enter and leave the cell. Recognize that in all but quite primitive cells, a complex network of proteins provides organization and shape. In addition, understand that flagella and/or cilia may allow some Protista, some Monera, and some animal cells to move.

B.1.3 Know and describe that within the cell are specialized parts for the transport of materials, energy capture and release, protein building, waste disposal, information feedback, and movement. In addition to these basic cellular functions common to all cells, understand that most cells in multicellular organisms perform some special functions that others do not.

B.1.6 Show that a living cell is composed mainly of a small number of chemical elements - carbon, hydrogen, nitrogen, oxygen, phosphorous, and sulfur. Recognize that carbon can join to other carbon atoms in chains and rings to form large and complex molecules.

B.1.7 Explain that complex interactions among the different kinds of molecules in the cell cause distinct cycles of activities, such as growth and division. Note that cell behavior can also be affected by molecules from other parts of the organism, such as hormones.

B.1.8 Understand and describe that all growth and development is a consequence of an increase in cell number, cell size, and/or cell products. Explain that cellular differentiation results from gene expression and/or environmental influence. Differentiate between mitosis and meiosis.

B.1.9 Recognize and describe that both living and nonliving things are composed of compounds, which are themselves made up of elements joined by energy-containing bonds, such as those in ATP.

B.1.10 Recognize and explain that macromolecules such as lipids contain high energy bonds as well.

Developmental and Organismal Biology

B.1.11 Describe that through biogenesis all organisms begin their life cycles as a single cell and that in multicellular organisms, successive generations of embryonic cells form by cell division.

B.1.12 Compare and contrast the form and function of prokaryotic and eukaryotic cells.

B.1.16 Explain how higher levels of organization result from specific complexing and interactions of smaller units and that their maintenance requires a constant input of energy as well as new material.

B.1.19 Recognize and describe that metabolism consists of the production, modification, transport, and exchange of materials that are required for the maintenance of life.

Genetics

B.1.25 Explain that gene mutation in a cell can result in uncontrolled cell division, called cancer. Also know that exposure of cells to certain chemicals and radiation increases mutations and thus increases the chance of cancer.

B.1.26 Demonstrate how the genetic information in DNA molecules provides instructions for assembling protein molecules and that this is virtually the same mechanism for all life forms.

Evolution

B.1.30 Understand and explain that molecular evidence substantiates the anatomical evidence for evolution and provides additional detail about the sequence in which various lines of descent branched off from one another.

B.1.34 Explain that evolution builds on what already exists, so the more variety there is, the more there can be in the future. Recognize, however, that evolution does not necessitate long-term progress in some set direction.

Ecology

B.1.37 Explain that the amount of life any environment can support is limited by the available energy, water, oxygen, and minerals, and by the ability of ecosystems to recycle the residue of dead organic materials. Recognize, therefore, that human activities and technology can change the flow and reduce the fertility of the land.

B.1.44 Describe the flow of matter, nutrients, and energy within ecosystems.

Historical

 

Previous Indicator       Back to Standards       Next Indicator