B.1.45 Recognize that and describe how the physical or chemical environment may influence the rate, extent, and nature of the way organisms develop within ecosystems.

 

Molecules and Cells

7.4.3 Explain how, in sexual reproduction, a single specialized cell from a female merges with a specialized cell from a male & this fertilized egg carries genetic information from each parent & multiplies to form the complete organism.

7.4.4 Explain that the basic functions of organisms, such as extracting energy from food & getting rid of wastes, are carried out within the cell & understand that the way which cells function is similar in all organisms.

7.4.5 Explain how food provides the fuel & the building material for all organisms.

7.4.6 Describe how plants use the energy from light to make sugars from carbon dioxide & water to produce food that can be used immediately or stored for later use.

8.4.5 Explain that energy can be transferred from one form to another in living things.

8.4.6 Describe how animals get their energy from oxidizing their food & releasing some of this energy as heat.

B.1.3 Know and describe that within the cell are specialized parts for the transport of materials, energy capture and release, protein building, waste disposal, information feedback, and movement. In addition to these basic cellular functions common to all cells, understand that most cells in multicellular organisms perform some special functions that others do not.

B.1.4 Understand and describe that the work of the cell is carried out by the many different types of molecules it assembles, such as proteins, lipids, carbohydrates, and nucleic acids.

B.1.5 Demonstrate that most cells function best within a narrow range of temperature and acidity. Note that extreme changes may harm cells, modifying the structure of their protein molecules and therefore, some possible functions.

B.1.7 Explain that complex interactions among the different kinds of molecules in the cell cause distinct cycles of activities, such as growth and division. Note that cell behavior can also be affected by molecules from other parts of the organism, such as hormones.

B.1.8 Understand and describe that all growth and development is a consequence of an increase in cell number, cell size, and/or cell products. Explain that cellular differentiation results from gene expression and/or environmental influence. Differentiate between mitosis and meiosis.

B.1.9 Recognize and describe that both living and nonliving things are composed of compounds, which are themselves made up of elements joined by energy-containing bonds, such as those in ATP.

Developmental and Organismal Biology

B.1.11 Describe that through biogenesis all organisms begin their life cycles as a single cell and that in multicellular organisms, successive generations of embryonic cells form by cell division.

B.1.15 Understand and explain that, in biological systems, structure and function must be considered together.

B.1.16 Explain how higher levels of organization result from specific complexing and interactions of smaller units and that their maintenance requires a constant input of energy as well as new material.

B.1.17 Understand that and describe how the maintenance of a relatively stable internal environment is required for the continuation of life and explain how stability is challenged by changing physical, chemical, and environmental conditions, as well as the presence of disease agents.

B.1.19 Recognize and describe that metabolism consists of the production, modification, transport, and exchange of materials that are required for the maintenance of life.

Genetics

8.4.3 Recognize/describe that new varieties of cultivated plants, such as corn & apples, & domestic animals, such as dogs & horses, have resulted from selective breeding for particular traits.

B.1.26 Demonstrate how the genetic information in DNA molecules provides instructions for assembling protein molecules and that this is virtually the same mechanism for all life forms.

B.1.29 Understand that and explain how the actions of genes, patterns of inheritance, and the reproduction of cells and organisms account for the continuity of life, and give examples of how inherited characteristics can be observed at molecular and whole-organism levels - in structure, chemistry, or behavior.

And, we need to link gene expression and the developmental control of morphology

Evolution

Ecology

B.1.37 Explain that the amount of life any environment can support is limited by the available energy, water, oxygen, and minerals, and by the ability of ecosystems to recycle the residue of dead organic materials. Recognize, therefore, that human activities and technology can change the flow and reduce the fertility of the land.

B.1.40 Understand and explain that like many complex systems, ecosystems tend to have cyclic fluctuations around a state of rough equilibrium. However, also understand that ecosystems can always change with climate changes or when one or more new species appear as a result of migration or local evolution.

B.1.43 Understand that and describe how organisms are influenced by a particular combination of living and nonliving components of the environment.

Historical

 

Previous Indicator       Back to Standards       Next Indicator