B.2.2 Explain that Darwin argued that only biologically inherited characteristics could be passed on to offspring. Note that some of these characteristics were advantageous in surviving and reproducing. Understand that the offspring would also inherit and pass on those advantages, and over generations the aggregation of these inherited advantages would lead to a new species.


Molecules and Cells

B.1.8 Understand and describe that all growth and development is a consequence of an increase in cell number, cell size, and/or cell products. Explain that cellular differentiation results from gene expression and/or environmental influence. Differentiate between mitosis and meiosis.

Developmental and Organismal Biology

B.1.11 Describe that through biogenesis all organisms begin their life cycles as a single cell and that in multicellular organisms, successive generations of embryonic cells form by cell division.


8.4.1 Differentiate between inherited traits, such as hair color or flower color, & acquired skills, such as manners.

8.4.2 Describe that in some organisms, such as yeast or bacteria, all genes come from a single parent, while in those that have sexes, typically half of the genes come from each parent.

8.4.3 Recognize/describe that new varieties of cultivated plants, such as corn & apples, & domestic animals, such as dogs & horses, have resulted from selective breeding for particular traits.

8.4.7 Recognize & explain that small genetic differences between parents & offspring can accumulate in successive generations so that descendants are very different from their ancestors.

B.1.21 Understand and explain that the information passed from parents to offspring is transmitted by means of genes which are coded in DNA molecules.

B.1.23 Understand that and describe how inserting, deleting, or substituting DNA segments can alter a gene. Recognize that an altered gene may be passed on to every cell that develops from it, and that the resulting features may help, harm, or have little or no effect on the offspringÕs success in its environment.

B.1.24 Explain that gene mutations can be caused by such things as radiation and chemicals. Understand that when they occur in sex cells, the mutations can be passed on to offspring; if they occur in other cells, they can be passed on to descendant cells only.

B.1.25 Explain that gene mutation in a cell can result in uncontrolled cell division, called cancer. Also know that exposure of cells to certain chemicals and radiation increases mutations and thus increases the chance of cancer.

B.1.26 Demonstrate how the genetic information in DNA molecules provides instructions for assembling protein molecules and that this is virtually the same mechanism for all life forms.

B.1.29 Understand that and explain how the actions of genes, patterns of inheritance, and the reproduction of cells and organisms account for the continuity of life, and give examples of how inherited characteristics can be observed at molecular and whole-organism levels - in structure, chemistry, or behavior.


8.4.9 Recognize & describe that fossil evidence is consistent with the idea that human beings evolved from earlier species.

B.1.30 Understand and explain that molecular evidence substantiates the anatomical evidence for evolution and provides additional detail about the sequence in which various lines of descent branched off from one another.

B.1.31  Describe how natural selection provides the following mechanism for evolution: Some variation in heritable characteristics exists within every species, and some of these characteristics give individuals an advantage over others in surviving and reproducing. Understand that the advantaged offspring, in turn, are more likely than others to survive and reproduce. Also understand that the proportion of individuals in the population that have advantageous characteristics will increase.

B.1.32 Explain how natural selection leads to organisms that are well suited for survival in particular environments, and discuss how natural selection provides scientific explanation for the history of life on Earth as depicted in the fossil record and in the similarities evident within the diversity of existing organisms.

B.1.34 Explain that evolution builds on what already exists, so the more variety there is, the more there can be in the future. Recognize, however, that evolution does not necessitate long-term progress in some set direction.

B.1.35 Explain that the degree of kinship between organisms or species can be estimated from the similarity of their DNA sequences, which often closely matches their classification based on anatomical similarities. Know that amino acid similarities also provide clues to this kinship.


7.4.2 Describe that all organisms, including the human species, are part of & depend on two main interconnected global food webs, the ocean food web & the land food web.

8.4.8 Describe how environmental conditions affect the survival of individual organisms & how entire species may prosper in spite of the poor survivability or bad fortune of individuals.

B.1.37 Explain that the amount of life any environment can support is limited by the available energy, water, oxygen, and minerals, and by the ability of ecosystems to recycle the residue of dead organic materials. Recognize, therefore, that human activities and technology can change the flow and reduce the fertility of the land.

B.1.39 Describe how ecosystems can be reasonably stable over hundreds or thousands of years. Understand that if a disaster such as flood or fire occurs, the damaged ecosystem is likely to recover in stages that eventually result in a system similar to the original one.

B.1.41 Recognize that and describe how human beings are part of EarthÕs ecosystems. Note that human activities can, deliberately or inadvertently, alter the equilibrium in ecosystems.


7.7.1 Understand /explain that throughout history, people have created explanations for disease. Note that some held that disease had spiritual causes, but that the most persistent biological theory over the centuries was that illness resulted from an imbalance in the body fluids. Realize that the introduction of germ theory by Louis Pasteur & others in the nineteenth century led to the modern understanding of how many diseases are caused by microorganisms, such as bacteria, viruses, yeasts, & parasites.

7.7.2 Understand & explain that Louis Pasteur wanted to find out what caused milk & wine to spoil. Note that he demonstrated that spoilage & fermentation occur when microorganisms enter from the air, multiply rapidly, & produce waste products, with some desirable results, such as carbon dioxide in bread dough, & some undesirable, such as acetic acid in wine. Understand that after showing that spoilage could be avoided by keeping germs out or by destroying them with heat, Pasteur investigated animal diseases & showed that microorganisms were involved in many of them. Also note that other investigators later showed that specific kinds of germs caused specific diseases.

7.7.3 Understand & explain that Louis Pasteur found that infection by disease organisms (germs) caused the body to build up an immunity against subsequent infection by the same organisms. Realize that Pasteur then demonstrated more widely what Edward Jenner had shown for smallpox w/o understanding the underlying mechanism: that it was possible to produce vaccines that would induce the body to build immunity to a disease without actually causing the disease itself.

8.7.1 Understand/explain that Antoine LavoisierÕs work was based on the idea that when materials react with each other, many changes can take place, but that in every case the total amount of matter afterward is the same as before. Note that Lavoisier successfully tested the concept of conservation of matter by conducting a series of experiments in which he carefully measured the masses of all the substances involved in various chemical reactions, including the gases used & those given off.



Previous Indicator       Back to Standards       Next Indicator