Sensory processing is ubiquitous in our interactions with the environment, is performed with extreme efficiency, and forms the basis for many of our routine daily decisions. A pervasive idea in cognitive science is that decisions are the result of a comparison of sensory evidence that is accumulated over time. Findings from both neurophysiology and neuroimaging now suggest that the brain solves the problem of perceptual decision-making using a similar accumulator mechanism. Using accumulators as a framework, the PANLab seeks to understand how the brain processes sensory evidence, how that sensory evidence interacts with previous experiences, how that interaction contributes to decision making, and how those decisions lead to environmentally-appropriate actions. The research program emphasizes the understanding of fudamental sensory operations and how they may differ across typical and atypical populations. Research involves a combination of experimental methods and analysis techniques, including fuctional MRI, resting state and task-based functional connectivity, structural connectivity, psychophysics, self-report, daily diaries, TMS, and EEG.

Theoretical Framework

With some notable exceptions, most perception researchers, either explicitly or implicitly, consider perception to be one particular end-goal of perceptual systems. One's detailed perceptual experience of the environment is very convincing with regard to the idea that the primary job of perceptual systems must be to produce that rich phenomenonological experience. However, this is not the approach taken in the PANLab. For human perceptual systems to have evolved their particular characteristics, their end-goal must be to act on the environment. Thus, the primary purpose of perceptual systems is to integrate new sensory information with old sensory information in a way that leads to the execution of adaptive, environmentally-appropriate actions. Taking this idea a step further, it is possible to conceive of the brain as consisting of two main systems, one sensory and one motor (also see work by Joaquin Fuster, UCLA). Sensory systems integrate input and motor systems produce output. Long-lived concepts such as association cortex, perception, memory, and executive function are merely more abstract cases of the same neural functions that can be found in traditional sensorimotor cortex. In my view, these "functions" can be quantified as mathematical transformations. Primary sensorimotor cortices apply transformations that can be easily compared to concrete parameters of the external environment and are therefore judged as more concrete or "primary". Other cortical areas are further removed from the periphery along the signal chain (a loose hierarchy) and the transformations they apply are not as easily relatable to parameters of the environment. In this way, traditional association cortices can be considered functionally more abstract than primary sensorimotor cortices, but their functions are not qualitatively different.

PANLab Research Projects

Alcohol use disorders and the neural substrates of appetitive decision making

Alcohol use and learning mechanisms

Alcohol use and environmental context

Spatial and temporal integration mechanisms in face and object recognition

Development of visuohaptic convergence for shape processing

Using fMRI to track changes in sexual decision-making in adolescent women


Statements from former PANLab members

Jerry S. Fisher (undergraduate RA; now graduate student at Notre Dame) 2009

Psychology by definition is "the science that deals with mental processes and behavior" (American Heritage Dictionary). As a cognitive neuroimaging lab, we hope to contribute to this discipline through a greater understanding of the neural substrates that support our mind and mental processes. The human brain is perhaps one of the most fascinating all of evolution's orchestrations. Through its complex bundles of neurons, fibers, and structures, rests the mysterious underpinnings for all of our thoughts, emotions, and memories. It would be no great stretch to say the brain is the house of our selves. And yet for all this, we know so little about it. What is the true relationship between our minds and the world around us? In what ways do we come to know and recognize the outside world? How is this knowledge shaped and integrated by our biological framework? How is it preserved? Endless questions exist and as of now we have breached only the top tip of the ice burg. Our motivation in this lab is to scratch the surface a little further. With the advent of noninvasive functional magnetic resonance imaging, this unseen realm of the human brain in action can be explored a little further. It is a fascinating venture, and we are proud to be a part of it.

Home People Publications Teaching Links