Computational models of collective behavior

Goldstone, R. L., & Janssen, M. A. (2005). Computational models of collective behavior. Trends in Cognitive Science, 9, 424-430.

Computational models of human collective behavior offer promise in providing quantitative and empirically verifiable accounts of how individual decisions lead to the emergence of group-level organizations. Agent-based models (ABMs) describe interactions among individual agents and their environment, and provide a process-oriented alternative to descriptive mathematical models. Recent ABMs provide compelling accounts of group pattern formation, contagion, and cooperation, and can be used to predict, manipulate, and improve upon collective behavior. ABMs overcome an assumption underlying much of cognitive science – that the individual is the critical unit of cognition. The advocated alternative is that individuals participate in collective organizations that they may not understand or even perceive, and that these organizations affect and are affected by individual behavior.

Download PDF version of this paper