Diverse evidence shows that perceptually integral dimensions, such as those composing color, are represented holistically. However, the nature of these holistic representations is poorly understood. Extant theories, such as those founded on multidimensional scaling or general recognition theory, model integral stimulus spaces using a Cartesian coordinate system, just as with spaces defined by separable dimensions. This approach entails a rich geometrical structure that has never been questioned but may not be psychologically meaningful for integral dimensions. In particular, Cartesian models carry a notion of orthogonality of component dimensions, such that if 1 dimension is diagnostic for a classification or discrimination task, another can be selected as uniquely irrelevant. This article advances an alternative model in which integral dimensions are characterized as topological spaces. The Cartesian and topological models are tested in a series of experiments using the perceptual-learning phenomenon of dimension differentiation, whereby discrimination training with integral-dimension stimuli can induce an analytic representation of those stimuli. Under the present task design, the 2 models make contrasting predictions regarding the analytic representation that will be learned. Results consistently support the Cartesian model. These findings indicate that perceptual representations of integral dimensions are surprisingly structured, despite their holistic, unanalyzed nature.