Improving Perception to Make Distant Connections Closer

Goldstone, R. L., Landy, D., & Brunel, L. (2011). Improving Perception to Make Distant Connections Closer. Frontiers in Perception Science, 2.

One of the challenges for perceptually grounded accounts of high-level cognition is to explain how people make connections and draw inferences between situations that superficially have little in common.  Evidence suggests that people draw these connections even without having explicit, verbalizable knowledge of their bases.  Instead, the connections are based on sub-symbolic representations that are grounded in perception, action, and space.  One reason why people are able to spontaneously see relations between situations that initially appear to be unrelated is that their eventual perceptions are not restricted to initial appearances.  Training and strategic deployment allow our perceptual processes to deliver outputs that would have otherwise required abstract or formal reasoning.  Even without people having any privileged access to the internal operations of perceptual modules, these modules can be systematically altered so as to better subserve our high-level reasoning needs.  Moreover, perceptually-based processes can be altered in a number of ways to closely approximate formally sanctioned computations.

Download PDF version of this paper

Innovation, imitation, and problem-solving in a networked group

Wisdom, T. N., & Goldstone, R. L. (2011).  Innovation, imitation, and problem-solving in a networked group.  Nonlinear Dynamics, Psychology, and Life Sciences, 15, 229-252.

We implemented a problem-solving task in which groups of participants simultaneously played a simple innovation game in a complex problem space, with score feedback provided after each of a number of rounds. Each participant in a group was allowed to view and imitate the guesses of others during the game. The results showed the use of social learning strategies previously studied in other species, and demonstrated benefits of social learning and nonlinear effects of group size on strategy and performance. Rather than simply encouraging conformity, groups provided information to each individual about the distribution of useful innovations in the problem space. Imitation facilitated innovation rather than displacing it, because the former allowed good solutions to be propagated and preserved for further cumulative innovations in the group. Participants generally improved their solutions through the use of fairly conservative strategies, such as changing only a small portion of one’s solution at a time, and tending to imitate solutions similar to one’s own. Changes in these strategies over time had the effect of making solutions increasingly entrenched, both at individual and group levels. These results showed evidence of nonlinear dynamics in the decentralization of innovation, the emergence of group phenomena from complex interactions of individual efforts, stigmergy in the use of social information, and dynamic tradeoffs between exploration and exploitation of solutions. These results also support the idea that innovation and creativity can be recognized at the group level even when group members are generally cautious and imitative.

Download this paper

Going with the group in a competitive game of iterated reasoning

Frey, S., & Goldstone, R. L. (2011).  Going with the group in a competitive game of iterated reasoning.  Proceedings of the Thirty-Third Annual Conference of the Cognitive Science Society.  (pp. 1912-1917).  Boston, Massachusetts: Cognitive Science Society.

In some strategic games, thinking ahead about other players’ reasoning can lead to better predictions about what they will do. In other games, infinitely iterated reasoning ultimately prescribes random play. In an online experiment of strategic thinking in groups, we tested participants in a game with the formal structure of a random game, but the superficial struc- ture of a game that rewards iterated reasoning. We found that participants conformed to the superficial structure of the game, and earned more than they would have by playing randomly. We estimated how many steps participants thought ahead in the game and discovered implicit coordination at the group level. Participants unexpectedly “matched” their degree of iterated thinking to each other.

Download PDF version of this paper

Early perceptual learning

Goldstone, R. L., Son, J. Y, & Byrge, L. (2011).  Early perceptual learning.  Infancy16, 45-51.

Bhatt and Quinn (2011) present a compelling case that human learning is early in two very different, but interacting, senses. Learning is developmentally early in that even infants show strikingly robust adaptation to the structures present in their world. Learning is also early in an information processing sense because infants’ adapt their perceptual encodings and organizations at an early stage of neural processing. Both senses of ”early” speak to the importance of learning because they imply that learners are adapting their representations of their environment in a way that affects all ”down-stream” processing. Developmentally speaking, the learning that an infant enacts serves as the groundwork for all subsequent learning. In terms of information processing, adapting early-stage sensory and perceptual processes in turn affects all subsequent cognitive processes. There is evidence from neuroscience that interactions with an environment do cause early changes to primarysensory cortices (Goldstone, 1998; Vogels, 2010). One might generally suppose that it is advisable to be conservative in making such environment driven cortical changes, given the ripples of influence caused by early learning in both senses. Manipulating grounding representations is a risky proposition. However, the evidence indicates that systems that need to respond effectively to their environment need to engage in both kinds of learning.

Download PDF version of this paper

Adaptive group coordination and role differentiation

Roberts, M. E., & Goldstone, R. L. (2011).  Adaptive Group Coordination and Role Differentiation.  PLoS One, 6, 1-8.

Many real world situations (potluck dinners, academic departments, sports teams, corporate divisions, committees, seminar classes, etc.) involve actors adjusting their contributions in order to achieve a mutually satisfactory group goal, a win-win result. However, the majority of human group research has involved situations where groups perform poorly because task constraints promote either individual maximization behavior or diffusion of responsibility, and even successful tasks generally involve the propagation of one correct solution through a group. Here we introduce a group task that requires complementary actions among participants in order to reach a shared goal. Without communication, group members submit numbers in an attempt to collectively sum to a randomly selected target number. After receiving group feedback, members adjust their submitted numbers until the target number is reached. For all groups, performance improves with task experience, and group reactivity decreases over rounds. Our empirical results provide evidence for adaptive coordination in human groups, and as the coordination costs increase with group size, large groups adapt through spontaneous role differentiation and self-consistency among members. We suggest several agent-based models with different rules for agent reactions, and we show that the empirical results are best fit by a flexible, adaptive agent strategy in which agents decrease their reactions when the group feedback changes. The task offers a simple experimental platform for studying the general problem of group coordination while maximizing group returns, and we distinguish the task from several games in behavioral game theory.

Download PDF version of this paper

Learning near-optimal search in a minimal explore/exploit task

Sang, K., Todd, P. M., & Goldstone, R. L. (2011). Learning near-optimal search in a minimal explore/exploit task. Proceedings of the Thirty-Third Annual Conference of the Cognitive Science Society. (pp. 2800-2805). Boston, Massachusetts: Cognitive Science Society.

How well do people search an environment for non-depleting resources of different quality, where it is necessary to switch between exploring for new resources and exploiting those already found? Employing a simple card selection task to study exploitation and exploration, we find that the total resources accrued, the number of switches between exploring and exploiting, and the number of trials until stable exploitation becomes more similar to those of the optimal strategy as experience increases across searches. Subjects learned to adjust their effective (implicit) thresholds for exploitation toward the optimal threshold over 30 searches. Those implicit thresholds decrease over turns within each search, just as the optimal threshold does, but subjects’ explicitly stated exploitation threshold increases over turns. Nonetheless, both the explicit and learned implicit thresholds produced performance close to optimal.

Download PDF version of this paper

Connecting instances to promote children’s relational reasoning

Son, J. Y., Smith, L. B., & Goldstone, R. L. (2011). Connecting instances to promote children’s relational reasoning.  Journal of Experimental Child Psychology, 108, 260-277.

The practice of learning from multiple instances seems to allow children to learn about relational structure. The experiments reported here have focused on two issues regarding relational learning from multiple instances: (1) what kind of perceptual situations foster such learning and (2) how particular object properties, such as complexity or similarity, interact with relational learning. Two kinds of perceptual situations were of interest here: simultaneous view, where instances are viewed at once, and sequential view, instances are viewed one at a time, one right after the other. We examine the influence of particular perceptual situations and object properties using two tests of relational reasoning: a common match-to-sample task (where new instances are compared to a common sample) and a variable match-to-sample task (where new instances are compared to a sample that varies on each trial). Experiments 1 and 2 indicate that simultaneous presentation of even highly dissimilar instances, one simple and one complex, effectively connects them together and improves relational generalization in both match-to-sample tasks. Experiment 3 showed simple samples are more effective than complex ones in the common match-to-sample task. However, when one instance is not used a common sample and various pairs of instances are simply compared (Experiment 4), simple and rich instances are equally effective at promoting relational learning. These results bear on our understanding of how children connect instances and how those initial connections affect learning and generalization.

Download PDF version of this paper

Processing emergent features in metaphor comprehension

Terai, A. & Goldstone, R. L. (2011).  Processing emergent features in metaphor comprehension. Proceedings of the Thirty-Third Annual Conference of the Cognitive Science Society.  (pp. 2043-2048).  Boston, Massachusetts: Cognitive Science Society.

This study examines the processing of emergent features in metaphors. Emergent features are metaphoric interpretations that are characteristic neither of the target nor the vehicle. In the first experiment, participants were asked to respond as to whether a verbal feature is an appropriate interpretation of the metaphor, which was presented as a prime. They are asked to respond immediately after a tone is presented which has a variable temporal lag after the feature. The timing of each tone controlled the participants’ response times. The results show that the response deadline given to the participants only slightly affected their judgments. In a second experiment, the time to interpret a metaphor was controlled by varying the pre- sentation time of the metaphor. The results showed that emer- gent features require more time for recognition as a metaphoric interpretation than do non-emergent features. The results sup- port the hypothesis that interaction among features causes feature emergence.

Download PDF version of this paper

Transfer, And The Effects Of Context Outside Of The Training Task

Day, S. B., Manlove, S., & Goldstone, R. L. (2011).  Transfer, and the effects of context outside of the training task.  Proceedings of the Thirty-Third Annual Conference of the Cognitive Science Society.  (pp. 2637-2642).  Boston, Massachusetts: Cognitive Science Society.

While the use of concrete, contextualized and personally relevant examples can benefit learners in terms of comprehension and motivation, these types of examples can come with a cost. Examples may become too bound to their particular context, and individuals may have a difficult time recognizing when the underlying principles are relevant in new situations. In the current study, we provide evidence that contextualization may impair knowledge transfer even when that context occurs outside of the training example itself. Specifically, when students were taught about positive feedback systems in the context of polar ice-albedo effects, those individuals that had previously learned about the effects of global warming on polar bear populations showed reliably poorer transfer performance.

Download PDF version of this paper

Analogical Transfer from a Simulated Physical System

Day, S., & Goldstone, R. L. (2011).  Analogical transfer from a simulated physical system.  Journal of Experimental Psychology: Learning, Memory, and Cognition37,551-567.

Previous research has consistently found that spontaneous analogical transfer is strongly tied to concrete and contextual similarities between the cases. However, that work has largely failed to acknowledge that the relevant factor in transfer is the similarity between individuals’ mental representations of the situations, rather than the overt similarities between the cases themselves. Across several studies, we find that participants are able to transfer strategies learned from a perceptually concrete simulation of a physical system to a task with very dissimilar content and appearance. This transfer is reflected in better performance on the transfer task when its underlying dynamics are consistent rather than inconsistent with the preceding training task. Our data indicate that transfer in these tasks relies on the perceptual and spatial nature of the training task, but does not depend on direct interaction with the system, with participants performing equally well after simply observing the concrete simulation. We argue that participants in these studies are using the concrete, spatial, dynamic information presented in the training simulation as the basis for a concretely similar mental model of the dissimilar transfer task. Unexpectedly, our data consistently showed that transfer was independent of reported recognition of the analogy between tasks: while such recognition was associated with better overall performance, it was not associated with better transfer (in terms of applying an appropriate strategy). Together, these findings suggest that analogical transfer between overtly dissimilar cases may be much more common—and much more relevant to our cognitive processing—than is generally assumed.

Download PDF version of this paper

Distinguishing Levels of Grounding that Underlie Transfer of Learning

Byrge, L. A., & Goldstone, R. L. (2011).  Distinguishing levels of grounding that underlie transfer of learning.  Proceedings of the Thirty-Third Annual Conference of the Cognitive Science Society.  (pp. 2818-2823).  Boston, Massachusetts: Cognitive Science Society.

We find that transfer of learning from a perceptually concrete simulation to an isomorphic but superficially dissimilar text- based problem is sensitive to the congruence between the force dynamics common to both systems and the kinesthetic schema induced via action in the first, perceptually concrete, simulation. Counterintuitively, incompatibility between the force dynamics and the kinesthetic schema has a beneficial effect on transfer, relative to compatibility as well as an unrelated control. We suggest that this incompatibility between action and system dynamics may make the system’s relational structure more salient, leading to a more flexible conceptualization that ultimately benefits transfer. In addition, we suggest that too much “action concreteness” in hands-on learning may actually limit transfer, by fostering an understanding that is tied to that action and therefore less available for transfer in situations where that action is no longer relevant.

Download PDF version of this paper

Effects of grounded and formal representations on combinatorics learning

Braithwaite, D. W., & Goldstone, R. L. (2011). Effects of grounded and formal representations on combinatorics learning. Proceedings of the Thirty-Third Annual Conference of the Cognitive Science Society. (pp. 3431-3436). Boston, Massachusetts: Cognitive Science Society.

Two experiments examined the differential effects of ground- ed and formal representations on learning of mathematics. Both involved combinatorics, using outcome listing and com- binatorics formulas as examples of grounded and formal rep- resentations, respectively. Experiment 1 compared perfor- mance on near and far transfer problems following instruc- tions involving listing or formulas. Instruction in formulas led to more near transfer, while far transfer performance did not differ by condition. Experiment 2 compared performance fol- lowing four types of instruction: listing only, formulas only, listing fading (listing followed by formulas), and listing intro- duction (formulas followed by listing). The listing fading condition led to performance on par with the formulas only condition, and for near transfer problems, significantly higher than the listing introduction and pure listing conditions. The results support the inclusion of grounded representations in combinatorics instruction, and suggest that such representa- tions should precede rather than follow formal representations in the instructional sequence.

Download PDF version of this paper

Sequential Similarity and Comparison Effects in Category Learning

Carvalho, P. F., & Goldstone, R. L. (2011). Sequential similarity and comparison effects in category learning. Proceedings of the Thirty-Third Annual Conference of the Cognitive Science Society. (pp. 2977-2982). Boston, Massachusetts: Cognitive Science Society.

Order effects in category learning have been previously demonstrated. Specifically, alternation between exemplars of two categories has been shown to improve category learning and discrimination, compared to presenting exemplars of each category in separate blocks. However, the mechanisms under- lying order effects are still not completely known. Remaining issues pertain to the relevance of within and between category similarities, and the role of comparing sequentially presented objects. We present two experiments: in Experiment 1 within- and between-category similarity are manipulated simultane- ously with presentation schedule. In Experiment 2, alternation between categories is compared to two blocked conditions: one in which very similar stimuli are presented successively, and another in which they are dissimilar. Our results show a clear overall advantage of low similarity in categorization performance, but no effect of presentation schedule. Also, al- ternation between categories is shown to result in better per- formance than the blocked condition with more dissimilar stimuli.

Download PDF version of this paper