A Computational Model of Scientific Discovery in a Very Simple World, Aiming at Psychological Realism

Lara-Dammer, F., Hofstadter, D. R., & Goldstone, R. L. (2019). A Computational Model of Scientific Discovery in a Very Simple World, Aiming at Psychological Realism.  Journal of Experimental & Theoretical Artificial Intelligence, 1-22. 10.1080/0952813X.2019.1592234

We propose a computational model of human scientific discovery and perception of the world. As a prerequisite for such a model, we simulate dynamic microworlds in which physical events take place, as well as an observer that visually perceives and makes interpretations of events in the microworld. Moreover, we give the observer the ability to actively conduct experiments in order to gain evidence about natural regularities in the world. We have broken up the description of our project into two pieces. The first piece deals with the interpreter constructing relatively simple visual descriptions of objects and collisions within a context. The second phase deals with the interpreter positing relationships among the entities, winding up with elaborated construals and conjectures of mathematical laws governing the world. This paper focuses only on the second phase. As is the case with most human scientific observation, observations are subject to interpretation, and the discoveries are influenced by these interpretations.

Download PDF of paper

When does interleaving practice improve learning?

Carvalho, P. F., & Goldstone, R. L. (2019). When does interleaving practice improve learning? In J. Dunlosky & K. A. Rawson (Eds.) The Cambridge Handbook of Cognition and Education.  Cambridge, England: Cambridge University Press. (pp. 411-436).

As you flip through the pages of this handbook you will notice that the content does not seem to be randomly organized. The content of the handbook is sequenced in a particular way: foundations before general strategies, background before applications, etc. The editors envisaged a sequence of topics, the authors of each topic envisaged a sequence of information in each chapter, and so on. We selected a particular sequence because we considered it to be effective. Deciding how to sequence information takes place all the time in educational contexts, from educators deciding how to organize their syllabus to educational technology designers deciding how to organize a piece of educational software, from handbook editors and writers deciding how to organize their materials, to students making decisions as to how to organize their study. One might imagine that as long as all students study the same materials, regardless of the sequence in which they study it, they will all learn the same information. This could not be further from the truth. In this chapter, we will review evidence of how and why the sequence of study changes what is learned. In doing so, we will try to uncover the powerful ways in which sequence can improve or deter learning.

Download PDF of Chapter here

The emergence of social norms and conventions

Hawkins, R. X. D., Goodman, N. D., & Goldstone, R. L. (2019). The emergence of social norms and conventions.  Trends in Cognitive Science.

The utility of our actions frequently depends upon the beliefs and behavior of other agents. Thankfully, through experience, we learn norms and conventions that provide stable expectations for navigating our social world. Here, we review several distinct influences on their content and distribution. At the level of individuals locally interacting in dyads, success depends on rapidly adapting pre-existing norms to the local context. Hence, norms are shaped by complex cognitive processes involved in learning and social reasoning. At the population level, norms are influenced by intergenerational transmission and the structure of the social network. As human social connectivity continues to increase, understanding and predicting how these levels and time scales interact to produce new norms will be crucial for improving communities. 

Download PDF of paper here