Formal mathematical reasoning provides an illuminating test case for understanding how humans can think about things that they did not evolve to comprehend. People engage in algebraic reasoning by 1) creating new assemblies of perception and action routines that evolved originally for other purposes (reuse), 2) adapting those routines to better fit the formal requirements of mathematics (adaptation), and 3) designing cultural tools that mesh well with our perception-action routines to create cognitive systems capable of mathematical reasoning (invention). We describe evidence that a major component of proficiency at algebraic reasoning is Rigged Up Perception-Action Systems (RUPAS), via which originally demanding, strategically-controlled cognitive tasks are converted into learned, automatically executed perception and action routines. Informed by RUPAS, we have designed, implemented, and partially assessed a computer-based algebra tutoring system called Graspable Math with an aim toward training learners to develop perception-action routines that are intuitive, efficient, and mathematically valid.

# Tag Archives: mathematics

# Modeling Mathematical Reasoning as Trained Perception-Action Procedures

We have observed that when people engage in algebraic reasoning, they often perceptually and spatially transform algebraic notations directly rather than first converting the notation to an internal, non spatial representation. We describe empirical evidence for spatial transformations, such as spatially compact grouping, transposition, spatially overlaid intermediate results, cancelling out, swapping, and splitting. This research has led us to understand domain models in mathematics as the deployment of trained and strategically crafted perceptual-motor processes working on grounded and strategically crafted notations. This approach to domain modeling has also motivated us to develop and assess an algebra tutoring system focused on helping students train their perception and action systems to coordinate with each other and formal mathematics. Overall, our laboratory and classroom investigations emphasize the interplay between explicit mathematical understandings and implicit perception action training as having a high potential payoff for making learning more efficient, robust, and broadly applicable.

# Informal mechanisms in mathematical cognitive development: The case of arithmetic

The idea that cognitive development involves a shift towards abstraction has a long history in psychology. One incarnation of this idea holds that development in the domain of mathematics involves a shift from non-formal mechanisms to formal rules and axioms. Contrary to this view, the present study provides evidence that reliance on non-formal mechanisms may actually increase with age. Participants – Dutch primary school children – evaluated three-term arithmetic expressions in which violation of formally correct order of evaluation led to errors, termed foil errors. Participants solved the problems as part of their regular mathematics practice through an online study platform, and data were collected from over 50,000 children representing approximately 10% of all primary schools in the Netherlands, suggesting that the results have high external validity. Foil errors were more common for problems in which formally lower-priority sub-expressions were spaced close together, and also for problems in which such sub-expressions were relatively easy to calculate. We interpret these effects as resulting from reliance on two non-formal mechanisms, perceptual grouping and opportunistic selection, to determine order of evaluation. Critically, these effects reliably increased with participants’ grade level, suggesting that these mechanisms are not phased out but actually become more important over development, even when they cause systematic violations of formal rules. This conclusion presents a challenge for the shift towards abstraction view as a description of cognitive development in arithmetic. Implications of this result for educational practice are discussed.

# Getting from here to there: Testing the effectiveness of an interactive mathematics intervention embedding perceptual learning

We describe an interactive mathematics technology intervention From Here to There! (FH2T) that was developed by our research team. This dynamic program allows users to manipulate and transform mathematical expressions. In this paper, we present initial findings from a classroom study that investigates whether using FH2T improves learning. We compare learning gains from two different instantiations of FH2T (retrieval practice and fluid visualizations), as well as a control group, and investigate the role of prior knowledge and content exposure in FH2T as possible moderators of learning. Findings, as well as implications for research and practice are discussed.