Plant Chromatin Immunoprecipitation and ChIP/Chop

Sasha Preuss, Richard Lawrence and Craig Pikaard, Biology Department, Washington University at St. Louis, MO 63130, USA.

This protocol is adapted from:

1. Grow 2 large petri plates (150 mm) of Arabidopsis seedlings (several hundred/plate) on sterile MS-agar, 4g/L phytoegg, 1% sucrose, pH 5.2 8-12 days.

2. Harvest 3 grams of seedlings from each plate into a separate 50 ml conical centrifuge tube.

3. Rinse seedlings gently with 40 ml deionized (Milli-Q) water; repeat the rinse a second time.

4. Add 37 ml of 1.0% formaldehyde

5. Stuff the top of each 50 ml conical tube (containing the formaldehyde-soaked seedlings) with nylon mesh to keep the seedlings immersed in the liquid during vacuum infiltration (and to aid later decanting and rinsing steps). Also poke holes in the cap of the conical tube and then screw the cap onto the tube.

6. Vacuum infiltrate the seedlings for 10 minutes in a desiccator attached to a vacuum pump. You should pull a vacuum in excess of 25 inches mercury.

7. Quench the crosslinking by adding 2.5 ml of 2M glycine ([Final] = 0.125M) and vacuum infiltrate for an additional 5 minutes.

8. Rinse the seedlings 2 times with Milli-Q (deionized) water, then remove as much water as possible.

9. Grind seedlings in liquid Nitrogen to a fine powder using a mortar and pestle.

10. Add the powder to 30 ml of Extraction Buffer 1 in a 50 ml conical tube, vortex, place on ice.

11. Filter solution through 2 layers of Miracloth, into a 30mL oak ridge tube.

12. Centrifuge solution 20 minutes @ 4000rpm (1940 x g) at 4 °C in a Beckman
13. Remove supernatant and resuspend pellet in 1 ml extraction buffer 2 at 4 °C. (transfer to 1.5ml eppendorf tube)

14. Centrifuge at top speed in microfuge (~14,000 x g), 10 minutes at 4 °C.

15. Remove supernatant and resuspend pellet in 300 ul extraction buffer 3 at 4 °C.

16. In a clean eppendorf tube, add 300ul extraction buffer 3. Layer the resuspended pellet from step 15 on top of this 300 ul cushion.

17. Spin solution 1 hour @ top speed in microfuge at 4 °C.

18. Remove supernatant and resuspend chromatin pellet in 500 ul of nuclear lysis buffer (keep on ice). Pool all resuspended chromatin samples of the same genotype or chemical treatment.

19. Sonicate chromatin solution on ice 4 times, 10 seconds each @ 40% duty cycle, power setting 2 on a Branson sonifier (Kranz lab)—pause 1 min. between each 10 sec pulse.

20. Centrifuge the chromatin sample in a microfuge 10 minutes, top speed (14,000 x g) at 4°C. Transfer supernatant to new tube and spin 10 minutes, top speed at 4 °C. Remove supernatant (crude chromatin) to new tube. The chromatin can be frozen at –80°C at this point.

21. Transfer two 100 ul aliquots of chromatin to separate siliconized microfuge tubes. Add 900 ul of ChIP dilution buffer containing 1mM PMSF and 1:100 Sigma-Aldrich plant protease inhibitors (added just before use) to each tube. If you are not using the sigma plant protease inhibitor cocktail see the end of this document for concentrations. Using siliconized tubes significantly reduces carry over of non-antibody bound chromatin.

22. Equilibrate Protein A agarose beads blocked with salmon sperm DNA (Upstate Biotechnology) by rinsing 3x in 1 ml of ChIP dilution buffer.

23. Preclear each chromatin sample by adding 40 ul of equilibrated Protein A beads to each sample and mixing on a rotating mixer at 4 °C for 1 hour.

24. Spin samples of chromatin and beads at 0.8 RPM, 2 min at 4 °C to pellet beads.
25. Combine two 1000 ul samples and split into 3 tubes (e.g. for mock, H3K4me, and H3K9me IPs) of 600ul and one of 60ul (10 % input) using siliconized microcentrifuge tubes. Add desired antibodies to each tube except one (this is the mock control). Typical antibodies and amounts are:
- anti- H3 K9 dimethyl (Abcam) = 10 ul
- anti- H3 K4 trimethyl (Abcam) = 10 ul

26. Incubate chromatin plus antibodies on a rotating mixer wheel, 4 hours to overnight at 4 °C (4 hours works fine – no reason to go longer unless you need a break).

27. Capture immune complexes by adding 40ul of Protein A agarose beads (equilibrated in ChIP dilution buffer) and rotating at 4 °C for 1 hour.

28. Pellet beads by centrifuging 0.8 RPM, 2 min. at 4 °C.

29. Wash with 1 ml of each of the following wash buffers 5 min. at 4 °C each:
- Low Salt Wash Buffer
- High Salt Wash Buffer
- LiCl Wash Buffer
- TE (2 times)

30. Remove residual TE

31. add 100ul 10% Chelex resin (10g/100ml water, purchased from Biorad), and vortex. Chelex binds ions that are required for the action of nucleases, protecting the DNA during boiling to reverse the formaldehyde crosslinks. The use of Chelex improves the yield of the IP'ed DNA significantly.

32. reverse protein DNA crosslinks by boiling 10 minutes, allow to cool to room temp.

33. Add 1 ul of 20mg/ml Proteinase K, incubate 30 min at 50°C

34. boil 10 minutes

35. centrifuge 5 minutes at full speed, at room temperature. Collect supernatant into new tube

36. add 100ul TE to the pellet, vortex, centrifuge. Collect and combine both supernatants in a single tube

37. For amplification of ribosomal RNA genes, we typically use 2.5 ul of DNA in a PCR reaction amplified for 26 cycles
Chip-Chop PCR to assay methylation density of ChIPed DNA

Take DNA from the ChIP reaction and digest with McrBC (concentration and time need to be empirically determined).

10x NEB buffer 2 2ul
100x BSA 0.2ul
100x GTP 0.2ul (Note: GTP is sensitive to freeze thaw cycles).
DNA 5 ul
McrBC 1 ul
Water to 20 ul

Be sure to also do a no McrBC control

Incubate 3 hrs at 37°C, kill reaction for 15 minutes at 65°C
Use 2.5 ul of DNA in PCR reaction, typically 28 cycles for rRNA genes
plant ChIP solutions

Extraction Buffer 1
for 100 ml: for 250 ml:
0.4M sucrose 20 ml 2M 50nl
10mM Tris-HCl pHi 8 1 ml 1M 2.5ml
5mM BME (2 (beta)-mercaptoethanol) 35 μl 14.3M 87.5 ml
1mM PMSF 1ml 0.1M 2.5ml
+ PIs (protease inhibitors)

Extraction Buffer 2
for 10 ml:
0.25M sucrose 1.25 ml 2M
10mM Tris-HCl pH 8 100 μl 1M
10mM MgCl2 100 μl 1M
1% Triton X-100 100ul 100%
5mM BME 3.5 μl 14.3M
1mM PMSF 100ul .1M
+ PIs
H2O to volume

Extraction Buffer 3
for 10 ml:
1.7M sucrose 8.5 ml 2M
10mM Tris-HCl pH 8 100 μl 1M
0.15% Triton X-100 15ul 100%
2mM MgCl2 20 μl 1M
5mM BME 3.5 μl 14.3M
1mM PMSF 100ul .1M
+ PIs
H2O to volume

Nuclei Lysis Buffer
for 5 ml:
50mM Tris-HCl ph 8 0.25 ml 1M
10mM EDTA 100 μl 0.5M
1% SDS 0.5 ml 10%
1mM PMSF 50ul .1M
+ PIs H2O to volume

ChIP Dilution Buffer
for 10 ml:
1.1% Triton X-100 110 μl 100%
1.2mM EDTA 24 μl 0.5 M
16.7mM Tris-HCl pH 8 167 μl 1M
167mM NaCl 334 μl 5M
H2O to volume

Low Salt Wash Buffer
150mM NaCl for 50 ml:
0.2% SDS 1.5 ml 5M
0.5% Triton X-100 1ml 10%
2mM EDTA .25 ml 100%
20mM Tris-HCl pH 8 200 μl 0.5M
H2O to volume

High Salt Wash Buffer

500mM NaCl for 50 ml:
0.2% SDS 5ml 5M
0.5% Triton X-100 1 ml 10%
2mM EDTA .25 ml 100%
20mM Tris-HCl pH 8 200 μl 0.5M
H2O to volume

LiCl Wash Buffer:

0.25M LiCl for 50 ml:
0.5% NP-40 3.125 ml 4M
0.5% deoxycholate 0.25 ml 100%
sodium salt
1mM EDTA 0.25 g
10mM Tris-HCl pH 8 100 μl 0.5M
H2O to volume

TE Buffer:

10mM Tris-HCl pH 8 for 50 ml:
0.5 ml 1M
1mM EDTA 0.5 ml 1M
H2O to volume

Protease Inhibitors

we use sigma plant protease inhibitor cocktail
at 1:100 dilution, you may also combine the
components yourself

per 10ml:
Antipain 2.5ug/ml 2.5ul of 1mg/ml
Bestatin .5ug/ml 5ul of 1mg/ml
Leupeptin .5ug/ml 1ul of 5mg/ml
Pepstatin A 4ug/ml 40ul of 1mg/ml
(in MetOH)