Learners’ Proficiency and Lexical Encoding of the Geminate / Non-geminate Contrast in Japanese

The 31st Second language Research Forum
October 19, 2012

by Chisato Kojima (Department of Linguistics, Indiana University)
and Isabelle Darcy (Department of Second Language Studies, Indiana University)
Japanese has a length contrast both in consonants and vowels and that is phonemic

- *kata* “shoulder” vs. *katta* “won”
- *koto* “Japanese harp” vs. *kooto* “coat”

Geminate is represented as つ in hiragana (e.g. きって = *kitte* “postal stamp”)

Geminate is moraic
Research Question

Can learners lexically represent this L2 distinction (geminate vs. non-geminate) as native speakers do?

Goal of this study:
Investigate the acquisition patterns for length contrasts from both categorization and lexical encoding perspectives.
The length contrast has been shown to be difficult to learn when it is not in learners’ L1 (Han 1992).

The contrast of geminate and non-geminate has been widely studied in various perspectives;
- Production: Han (1992)
- Perception: Hardison and Motohashi-Saigo (2010)
Research background

Focus of previous studies: discrimination and categorization

Less extensively explored:
The degree to which this contrast is encoded in learners’ lexical representations (e.g. Hayes-Harb & Masuda, 2008)

Focus of this study: explore categorization and lexical encoding abilities of L2 learners at different levels of proficiency: Does successful lexical encoding follow from accurate perception of the contrast?
Lexical encoding

- Representing phonological form of a word into the mental lexicon.
- Storing the information into long-term memory.
<table>
<thead>
<tr>
<th>Participants</th>
<th>Number of Participants</th>
<th>First language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginners</td>
<td>9</td>
<td>English</td>
</tr>
<tr>
<td>Advanced Learners</td>
<td>14</td>
<td>English</td>
</tr>
<tr>
<td>3rd or 4th year level or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>associate instructors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native Speakers</td>
<td>11</td>
<td>Japanese</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>
Tasks

(1) ABX-using length
 → Using geminate / non-geminate contrast

(2) ABX-ignoring length
 → Ignoring distinction in geminate / non-geminate contrast

(3) Lexical decision

※ All tasks use the same voice (but different tokens) to verify that subjects perceive length in that speaker.
Participants were asked to listen to triplets of stimuli consisting of invented words and to judge whether the third stimulus was similar to the first or the second one.

Test: mete mette mette

A B X

Control: mole moki mole

A B X

Expected response

X = B

X = A
Results ABX “using length”

- Effect of group ($F(2, 90) = 5.6, p < .01$).
- Effect of condition ($F(1, 90) = 5.2, p < .05$)
- But no interaction $p > .1$

NS: $n = 9$

- No effect of group ($F(2, 90) = 1.7, p > .1$).
- No effect of condition ($F(1, 90) = .9, p > .3$)
- No interaction $p > .1$
Results ABX “using length”

-Effect of group \((F(2, 90) = 5.6, p < .01) \).
-Effect of condition \((F(1, 90) = 5.2, p < .05) \).
-But no interaction \(p > .1 \).

- No effect of group \((F(2, 90) = 1.7, p > .1) \).
- No effect of condition \((F(1, 90) = .9, p > .3) \).
- No interaction \(p > .1 \).

Statistically there is no difference among both learner groups:

→Learners can discriminate geminate and non-geminate even at the beginning level with very high accuracy.
Listeners were asked to ignore length differences between stimuli while judging similarity (see Dupoux et al., 1997).

Expected response

Test: \textit{kepa} \ textit{keppo} \textit{keppa} \quad X = A * \\
\begin{array}{ccc}
A & B & X \\
\end{array}

Control: \textit{moke} \textit{moki} \textit{moke} \quad X = A \\
\begin{array}{ccc}
A & B & X \\
\end{array}

*\textit{kepa} and \textit{keppa} are similar only if the subject successfully ignore length
Native speakers will have difficulty ignoring length because they automatically pay attention to it.

→ Less accurate, longer response time
Results ABX “ignoring length”

Crucial difference is between advanced learners and native speakers:

- No effect of group ($F(2, 87), = 2.1 \ p > .1$)
- Effect of condition ($F(1, 87), = 15.3 \ p < .01$)
- No interaction

B: $n = 7$
NS: $n = 10$

- No effect of group ($F(2, 87), = .29 \ p > .7$)
- Effect of condition ($F(1, 87), = 5.3 \ p < .03$)
- No interaction
Results ABX “ignoring length”

Crucial difference is between **advanced learners** and **native speakers**:

- Advanced learners were equally accurate in test and control stimuli ($p > .05$)
 → **Can successfully ignore the length dimensions**
- Native speakers were worse in test stimuli than in control stimuli ($p < .05$)
 → **Cannot ignore length very easily when processing stimuli**
- This shows that advanced learners, even though they can discriminate and categorize geminates/non-geminates easily, still **process it differently** from native speakers.
Lexical Decision

- Listeners had to decide whether the stimulus they hear is a real Japanese word.
- All the real words were taken from the text books for the first year and second year students (*Genki* I and II).

<table>
<thead>
<tr>
<th>Example</th>
<th>Test</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>akeru</td>
<td>kippu</td>
<td>tenki</td>
</tr>
<tr>
<td>Gloss</td>
<td>“to open”</td>
<td>“weather”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Test</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>kipu</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>“ticket”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Test</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>akkeru</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>“weather”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lexical Decision

Basis for lexical decision:
compare the incoming input (stimulus) to stored phonological representations for words.

The only way to correctly reject a non-word (which is a potential word: *akeru ~ *akkeru) is to have a clear phonological representation of words.
GENERAL:
• Nonwords were slower than words in all groups.
• Test nonwords including geminates were the slowest.
• Order of latency
 \text{CtrlWd} < \text{TestWd} < \text{CtrlNW} < \text{Test NW}

COMPARISON: Learners vs Native
• Native speakers 'RT faster than learners' latency
 \text{(Advanced vs. Native:} (p < .02)))
 \text{(Beginner vs. Native} (p < .0001)))
Overall results: Accuracy

NATIVE SPEAKERS:
- Similar in test and control, in words and nonwords

LEARNERS:
- Accuracy higher for words over nonwords (in both test and control condition)
- Learners have a low accuracy for test nonwords in particular
Interaction of lexical status and stimuli type for both learner groups
Interaction between the variables: Stimuli type (geminate / non-geminate) and Lexical status (word vs. nonword)

- Beginners ($F(1, 24) = 5.9, p < .02$)
- Advanced learners ($F(1, 39) = 5.6, p < .02$)
- NS ($F(1, 27) = .1, p > .7$)
Predicted Difficulty of L2 Lexical encoding
(Darcy et al., in progress)

<table>
<thead>
<tr>
<th>L2 German:</th>
<th>L2 Japanese:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honig</td>
<td>akeru</td>
</tr>
<tr>
<td>*Hönig</td>
<td>*akkeru</td>
</tr>
</tbody>
</table>

1st:
word-old
- Easiest
- Highest Accuracy

3rd:
nonwd-new
- Easier(-)
- Medium Accuracy

2nd:
word-new
- Easier(+)
- Medium Accuracy

4th:
nonwd-old
- Hardest
- Lowest Accuracy

[φ] and [p:] are initially not “licensed”; encoded as bad exemplar of an L1 category [o*]/[p*] (Hayes-Harb & Masuda, 2008) or [o?] / [p?]
→ “fuzzy” lexical representation

German: *Honig* = “honey”; *König* = “king”
Japanese: *akeru* = “to open”; *kippu* = “ticket”

Examples for L1 English, which lacks phonemic front rounded vowels and geminate consonants
Overall improvement
Overall reduction of error rates indicates development for advanced learners

- Improvement most visible on words that contain geminates while beginners still struggle to accept words with geminate
Lexical Decision

- When L1 doesn’t use a certain dimension, L2 lexical encoding of it will be fragmentary or deficient compared to native speakers (at first)
 - Darcy et al., *in progress*; Ota et al., 2009; Pallier et al., 2001

- Case 1: non-native dimension encoded using the best equivalent in your L1 (a geminate [tː] will be encoded as [t])
 -> merger of the distinction in lexical representations

- Case 2: non-native dimension „marked“ as different or new, but still not fully target like (e.g. a geminate [tː] as [t*] (Hayes-Harb and Masuda, 2008) or [?]))
 -> distinction is lexically possible, but not stable
Implications

- Dissociation between categorization and lexical encoding.
 - Categorization does not predict lexical encoding straightforwardly

- Learning the form of words in a second language does not end with discrimination abilities

- Updates in phonological grammar are needed to license certain representations at the lexical level

- Question for further research;
 How do learners learn to update their phonological grammar and their lexical representations?
Learners can discriminate geminate and non-geminate contrasts even in earlier stages of exposure to L2.

However the way non-native speakers lexically encode the distinction is not the same as native speakers.
Acknowledgements

We would like to thank Prof. Stuart Davis, the Japanese Language Program at Indiana University, all the colleagues, participants to the study and last but not least, members of the Second Language Psycholinguistics Lab (SLPL).

*This research was funded in part by a Householder Research Fund from the Department of Linguistics, Indiana University.
Selected References

