Main Page
Contents
 1 RECENT PROGRESS IN MANYBODY THEORIES (RPMBT)
 2 Next Meeting in the RPMBT Series
 3 Organisation of the RPMBT Conference Series and Allied Activities
 4 The Development of Quantum ManyBody Theory
 5 PreHistory of the RPMBT Series
 6 History of the RPMBT Series
 7 Feenberg Memorial Medal
 8 Kümmel Early Achievement Award
RECENT PROGRESS IN MANYBODY THEORIES (RPMBT)
The conference series on Recent Progress in ManyBody Theories (RPMBT) is now firmly established as the premier series of international meetings in the field of manybody physics. The conferences offer an ideal opportunity to recognize important achievements and to showcase significant new results in various aspects of manybody physics. The series acts too to highlight entirely new and rapidly evolving fields which are themselves increasing both the breadth and depth of the discipline of quantum manybody theory, which underpins so much of modern physics.
The RPMBT series is governed and overseen by an International Advisory Committee. The general format and style of the conferences in the series follow an accepted and welldeveloped pattern, focusing on the development, refinement and important applications of the techniques of quantum manybody theory. The intention of the series has always been to cover in a broad and balanced fashion both the entire spectrum of theoretical tools developed to tackle the quantum manybody problem and their major fields of application. One of the main aims of the series is to foster the exchange of ideas and techniques among physicists working in such diverse areas of applications of manybody techniques as nuclear and subnuclear physics, astrophysics, atomic and molecular physics, quantum chemistry, complex systems, quantum field theory, strongly correlated electronic systems, magnetism, quantum fluids and condensed matter physics.
Next Meeting in the RPMBT Series
The Seveteenth International Conference on Recent Progress in ManyBody Theories (RPMBT17) will be held in Rostock, Germany during 813 September 2013.  
The Local Organising Committee comprises:
 
Important Dates are:
 
See here for a copy of the Conference Poster. 
Announcement: Open Call for Nominations Feenberg Medal
We are pleased to invite you to nominate candidates for the Feenberg Memorial Medal.
Complete nominations  as indicated in the Rules below  should be submitted (by email only please)
and by the deadline of 15 April 2013 to:
Arturo Polls ( artur@ecm.ub.edu ).
The decision of the Committee will be announced by 10 June 2013.
Please note that:
 proposals received AFTER 15th April will not be evaluated for this year.
The current members of the Selection Committee for this Award are:
 Hans Weidenmueller; Heidelberg, Germany (Chair)
 Gordon Baym; Urbana, USA
 Arturo Polls; Barcelona, Spain
We warmly thank you in advance for your involvement. Your nomination enable our community to mantain the high standard set by previous recipients and ensure that the Feenberg Medal continues to play a significant role in recognizing outstanding accomplishments in manybody physics,
Hans Weidenmueller
Chair, Feenberg Medal Selection Committee
Announcement: Open Call for Nominations Hermann Kümmel Early Achievement Award
We are pleased to invite you to nominate candidates for the Hermann Kümmel Early Achievement Award.
Complete nominations  as indicated in the Rules below  should be submitted (by email only please)
and by the deadline of 1 April 2013 to:
Ray Bishop ( raymond.bishop@manchester.ac.uk ).
The decision of the Committee will be announced by 1 June 2013.
Please note that:
 proposals received AFTER 1st April will not be evaluated for this year and,
 due to the nature of this award, nomination files will NOT be kept for future consideration, after this evaluation.
Similarly, files submitted for the last award will not be considered for this round.
The current members of the Selection Committee for this Award are:
 Raymond Bishop; Manchester, UK (Chair)
 Karen Hallberg; Bariloche, Argentina
 Masahito Ueda; Tokyo, Japan
We warmly thank you for your cooperation and enthusiasm to encourage young physicists into the field of Quantum ManyBody Theory,
Ray Bishop
Chair, Kümmel Award Selection Committee
Organisation of the RPMBT Conference Series and Allied Activities
The governing body that oversees all of the activities of the RPMBT Series of conferences and allied activities in the general field of quantum manybody theory is its International Advisory Committee (IAC). The IAC is responsible for selecting the range of Topics that is covered by the RPMBT series. One of the primary duties of the IAC is to select the venue and the Principal Organiser(s) of the next meeting in the Series, who will in turn act as Chair(s) of the Local Organising Committee for that Conference. The IAC is also responsible for arranging the eventual publication of any Conference Proceedings. The IAC has also arranged with World Scientific Publishing Co. to publish an ongoing Series on Advances in Quantum ManyBody Theory.
RPMBT International Advisory Committee
The current composition of the International Advisory Committee is:
 Raymond F. Bishop (Manchester, UK)
 Jordi Boronat (U. Politecnica, Barcelona, Spain)
 Charles E. Campbell (Treasurer, Minneapolis, Minnesota, USA)
 Joe Carlson (Los Alamos, New Mexico, USA)
 Siu A. Chin (College Station, Texas, USA)
 John W. Clark(St. Louis, Missouri, USA)
 Peter Fulde (Dresden, Germany),
 Susana Hernández (Chair, Buenos Aires, Argentina)
 Eckhard Krotscheck (Buffalo, NY, USA)
 Efstratios Manousakis (Tallahassee, Florida, USA)
 David Neilson (Secretary, Camerino, Italy)
 Gerardo Ortiz (Bloomington, Indiana, USA)
 Arturo Polls (Barcelona, Spain)
 Mikko Saarela (Oulu, Finland)
 Masahito Ueda (Tokyo, Japan)
Topics Covered by the RPMBT Series
The scientific program of all RPMBT conferences covers not only traditional topics in
manybody physics but also other frontier areas of current interest. Traditionally,
one or two areas of special interest to the Principal Local Organiser selected by
the IAC, and the Local Organising Committee which he/she chairs, are also highlighted
at each meeting.
Topics include:
 Quantum Fluids, Superfluids, and Solids
 Nuclear and Subnuclear Physics
 Strongly Correlated Electronic Systems
 Phase Transitions and Critical Phenomena
 Quantum Magnetism
 Computational Quantum ManyBody Methods
 Quantum Information and Computation
 Complex Systems
 Cold Bose and Fermi Systems
 New Frontiers
Publication of the RPMBT Conference Proceedings
 The Proceedings of the first conference in the series, RPMBT1, were published as Issues 1 and 2 of Volume 328 of the journal Nuclear Physics A.
 For the next two meetings, RPMBT2 and RPMBT3, the Proceedings were published as separate standalone volumes in the Springer series Lecture Notes in Physics.
 No Proceedings were published for the fourth meeting, RPMBT4.
 For the next four meetings, RPMBT5 to RPMBT8 inclusive, the Proceedings were published by Plenum Press as separate volumes in a series entitled Recent Progress in ManyBody Theories.
 After RPMBT8 the International Advisory Committee (IAC) of the RPMBT Series agreed with World Scientific to create a new series of volumes entitled Series on Advances in Quantum ManyBody Theory (SAQMBT), which would include the Proceedings of future RPMBT Conferences as well as other standalone volumes. The Proceedings of the next six meetings, RPMBT9 to RPMBT14 inclusive, were published in this Series. The Proceedings of three of these meetings, RPMBT11 to RPMBT13 inclusive, were also copublished as separate issues of the journal International Journal of Modern Physics B.
 No proceedings were published for the next two meetings, RPMBT15 and RPMBT16.
 Beginning with RPMBT17 the Proceedings will be published as issues of the openaccess Journal of Physics: Conference Series.
Series on Advances in Quantum ManyBody Theory (SAQMBT)
The Series on Advances in Quantum ManyBody Theory (SAQMBT) is published by World Scientific Publishing Co. Pte. Ltd. (Singapore), under an agreement with the IAC of the RPMBT Series of Conferences. The IAC selects the Series Editorial Board, who in turn are responsible for the commission of individual Volumes in the Series.
SAQMBT Series Editorial Board
The current members of the SAQMBT Series Editorial Board are:
 Raymond F. Bishop (Chair) (Manchester, UK)
 Charles E. Campbell (Minneapolis, Minnesota, USA)
 John W. Clark(St. Louis, Missouri, USA)
 Stefano Fantoni(Trieste, Italy)
Current Volumes in the SAQMBT Series
Published volumes in the SAQMBT Series include:
VOLUME  PUBLICATION YEAR  TITLE  AUTHORS  NUMBER OF PAGES  ISBN 
Vol. 1  1998  Recent Progress in ManyBody Theories (The Proceedings of the 9th International Conference; Sydney, Australia, 21  25 July 1997)  David Neilson and Raymond F. Bishop (eds.)  pp. xxx+516  9789810233693 (hardcover) 
Vol. 3  2000  Recent Progress in ManyBody Theories (The Proceedings of the 10th International Conference; Seattle, USA, 10 – 15 September 1999)  Raymond F. Bishop, Klaus A. Gernoth, Niels R. Walet, and Yang Xian (eds.)  pp. xviii+491  9789810243180 (hardcover) / 9789812792754 (ebook) 
Vol. 4  2002  Microscopic Approaches To Quantum Liquids In Confined Geometries  Eckhard Krotscheck and Jesus Navarro (eds.)  pp. xii+422  9789810246402 (hardcover) / 9789812778475 (ebook) 
Vol. 5  2001  150 Years Of Quantum ManyBody Theory (A Festschrift in Honour of the 65th Birthdays of John W. Clark, Alpo J. Kallio, Manfred L. Ristig, and Sergio Rosati; UMIST, Manchester, UK, 10 – 14 July 2000)  Raymond F. Bishop, Klaus A. Gernoth, and Niels R. Walet (eds.)  pp. xii+345  9789810247300 (hardcover) / 9789812799760 (ebook) 
Vol. 6  2002  Recent Progress In ManyBody Theories (The Proceedings of the 11th International Conference; Manchester, UK, 9 – 13 July 2001)  Raymond F. Bishop, Tobias Brandes, Klaus A. Gernoth, Niels R. Walet, and Yang Xian (eds.)  pp. xix+499  9789810248888 (hardcover) / 9789812777843 (ebook) 
Vol. 7  2002  Introduction To Modern Methods Of Quantum ManyBody Theory And Their Applications  Adelchi Fabrocini, Stefano Fantoni, and Eckhard Krotscheck (eds.)  pp. xii+413  9789812380692 (hardcover) / 9789812777072 (ebook) 
Vol. 8  2006  Pairing in Fermionic Systems: Basic Concepts and Modern Applications  Armen Sedrakian, John W Clark, and Mark Alford (eds.)  pp. x+285  9789812569073 (hardcover) / 9789812773043 (ebook) 
Vol. 9  2006  Recent Progress In ManyBody Theories (The Proceedings of the 12th International Conference; Santa Fe, New Mexico, 23 – 27 August 2004)  Joseph A Carlson and Gerardo Ortiz (eds.)  pp. xiv+270  9789812569578 (hardcover) / 9789812772893 (ebook) 
Vol. 10  2006  Recent Progress In ManyBody Theories (The Proceedings of the 13th International Conference; Buenos Aires, Argentina, 5 – 9 December 2005)  Susana Hernández and Horacio Cataldo (eds.)  pp. xiii+408  9789812700353 (hardcover) / 9789812772787 (ebook) 
Vol. 11  2008  Recent Progress In ManyBody Theories (The Proceedings of the 14th International Conference; Barcelona, Spain, 16 – 20 July 2007)  Jordi Boronat, Gregory Astrakharchik, and Ferran Mazzanti (eds.)  pp. xviii+439  9789812779878 (hardcover) / 9789812779885 (ebook) 
The Development of Quantum ManyBody Theory
Quantum manybody theory as a discipline in its own right dates largely from the 1950's, and is hence in many senses already a mature subject. Despite this apparent maturity the field remains vibrant and active, vigorous and exciting, vital and important. Indeed, the successes, importance and vitality of the field as the 20th century drew to its close, were very clearly recognized, for example, by the sharing of the 1998 Nobel Prizes in both Physics and Chemistry by the manybody theorists Robert Laughlin, Walter Kohn and John Pople. Earlier Nobel Laureates who obtained their awards for work in quantum manybody physics include: Lev Landau (1962), John Bardeen, Leon Cooper, and John Robert Schrieffer (1972), Philip Anderson, Sir Nevill Mott, and John van Vleck (1977). The most recent have been Alexei Abrikosov, Vitaly Ginzburg, and Tony Leggett (2003).
It is impossible to date the precise origin of quantum manybody theory as a subject in its own right. Nevertheless, even if 1958 is not the actual year of its birth, that year marks a particularly significant milestone in its development. Although much important work was done earlier, even considerably earlier, that single year and the few around it saw the publication of a large number of seminal papers by such forefathers of the field as Eugene Feenberg, Richard Feynman, Murray GellMann, Jeffrey Goldstone, Lev Landau, David Pines and many, many others. Possibly the most important of those others is Keith Brueckner, whose pathbreaking work dates from even earlier in the 1950's.
The history (and immediate prehistory) of the series itself provides a mirror in which to view later developments in the subject, as we discuss below.
Today, quantum manybody theory stands as one of the three great pillars of modern theoretical physics, together with quantum field theory and statistical physics. While quantum manybody theory was born largely out of quantum field theory in the 1950's, the two subjects thereafter have led rather separate lives. In recent years, however, the boundaries between them have again become eroded. Indeed, several papers in this volume concern themselves very productively with topics on this boundary. There is little doubt that the barriers between all three fields will increasingly be surmounted in the coming years, to their mutual advantage, leading to an increasing commonality of both approach and areas of discourse.
PreHistory of the RPMBT Series
In the 1970's the applications of quantum manybody theory in nuclear physics were becoming sufficiently varied and sophisticated that a number of conferences on the subject were organized. With hindsight it is clear that these formed the impetus to the later development of the conference series on Recent Progress in ManyBody Theories (RPMBT). The most important of these early meetings, which can be regarded in many ways as having been RPMBT0, is the 1972 conference on The Nuclear ManyBody Problem organized by F. Calogero and C. Ciofi degli Atti in Rome. Additionally, and before the official beginning of the RPMBT series, there were two very significant workshops held in 1975 and 1977 at the University of Illinois, Urbana, USA with Vijay Pandharipande as the chief organizer.
The attendees of the latter of these two meetings, the Workshop on Nuclear and Dense Matter, held during May 36, 1977, are shown in the photograph. It is noteworthy how many of those who either already were, or who later turned out to become, key figures in the field of quantum manybody theory, attended this meeting.  
The photograph is noteworthy in several respects:
 
A detailed list of those portrayed in the photograph can be found by clicking on the picture. 
History of the RPMBT Series
In response to the several precursor meetings discussed above that accentuated the need for a continuing series, the first official RPMBT meeting, RPMBT1, was held in Trieste in 1978,. A full list of the conferences held to date is as follows:
 .

Trieste, Italy; 1978 (2  7 October, 1978)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were published in:
 

Oaxtepec, Mexico; 1981 (12  17 January, 1981)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were published in:
 

OdenthalAltenberg, Germany; 1983 (29 August  3 September, 1983)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were published in:
 

San Francisco, California, USA; 1985 (12  17 August, 1985)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were not published.  

Oulu, Finland; 1987 (3  8 August, 1987)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were published in:
 

Arad, Israel; 1989 (5  10 November, 1989)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were published in:
 

Minneapolis, Minnesota, USA; 1991 (26  31 August, 1991)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were published in:
 

Schloss Seggau, Styria, Austria; 1994 (22  27 August, 1994)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were published in:
 

Sydney, Australia; 1997 (21  25July, 1997)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were published in:
 

Seattle, Washington, USA; 1999 (10 – 15 September, 1999)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were published in:
 

Manchester, UK; 2001 (9 – 13 July, 2001)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were published in:
 
Santa Fe, New Mexico, USA; 2004 (23 – 27 August, 2004)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were published in:
 
Buenos Aires, Argentina; 2005 (5 – 9 December, 2005)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were published in:
 
Barcelona, Spain; 2007 (16 – 20 July, 2007)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were published in:
 
Columbus, Ohio, USA; 2009 (27  31 July, 2009)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were not published, but most of the talks (including the Feenberg and Kümmel Award lectures and the Sunday tutorials) are available online.  
Bariloche, Argentina; 2011 (28 November  2 December, 2011)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting:
 
The Proceedings of the conference were not published, but most of the talks (including the Feenberg and Kümmel Award lectures) are available online.  
Rostock, Germany; 2013 (8  13 September, 2013)  
The Local Organising Committee comprised:
 
Some Highlights of the meeting: 
The general format and style of the conferences have undergone some changes that have reflected the developments of the field since its inception. At the first meeting, much excitement came from the development of several new methods for the quantum manybody problem. At a time where the community largely considered the field as "mature", new impetus came from realizing that not all was well with the manybody problem. This realization, first vocalized and brought to the attention of the community by John Clark, became known as the crisis in nuclearmatter theory. It arose when the variational results for the groundstate energy of nuclear matter, obtained from loworder variational calculations using Jastrowcorrelated trial wave functions, were found to lie significantly below the corresponding results obtained, with the same nucleonnucleon potentials, from lowestorder Brueckner theory in the perturbative framework. The resolution of this crisis taught us much about both of the main technological branches of quantum manybody theory, namely the variationaltheoretic and the perturbationtheoretic, and the interrelations between both. John Clark gave a Summary Talk at RPMBT1 in which he focused on giving an update on the crisis in nuclearmatter theory, including a recap of the problem.
Even more importantly, it led to the creation of a common language through which the practitioners in these previously quite disparate branches could communicate with, and learn from, each other. The first few meetings of the series were the forum where the "secondgeneration" manybody theories were publicized and discussed: fully optimized JastrowFeenberg and CBF methods, a tremendous development of coupled cluster theory (the "extended coupled cluster method"), parquettheory and, last but not least, stochastic methods which took advantage of the everincreasing computational power. This quest for a common language has remained a great unifying strength ever since. The early meetings in the RPMBT series also taught us that such existing techniques as correlated basis function theory and the coupled cluster method were already both extremely versatile and very accurate in practice. We learned too that what seemed to be needed much more than new techniques were better and more powerful systematic truncation or approximation hierarchies, based on the physics of the system to which they were being applied, and possibly also on marriages between existing methods.
Broadly speaking, there are two types of contributions to manybody theory. On the one hand there are those devoted to the development of new methods and techniques, and the refinement of existing ones. On the other hand there are those contributions which seek to understand and to explain emergent manybody phenomena in particular systems. Such systems themselves may be either highly simplified models, for which various exact results often play a key role, or more or less close representations of actual physical systems, for which extensive numerical computations are usually required. The earliest meetings in the series, up to and including RPMBT3 at least, were largely characterized by concentrating on techniques rather than on specific problems. The most active fields of application were the nuclear manybody problem and the quantum fluids ^{3}He, ^{4}He and their mixtures.
Over the years, the focus shifted somewhat from manybody techniques to manybody phenomena. By the time of RPMBT4, held in San Francisco in 1985, although nuclear problems and quantum fluids remained the main testbeds of manybody methods, a more visible response to recent experimental developments was apparent. Such topics as the quantum Hall effect, heavy fermions, Anderson localization, and the quarkgluon plasma became the foci for debate. With hindsight, RPMBT5 in Oulu in 1987 was probably the first meeting in the series in which there was enough apparent confidence in the tools of quantum manybody theory to stress more their ability to be widely applied to the newer and less traditional fields of application. Very soon after the discovery in 1986 by Bednorz and Müller of the high transitiontemperature superconductivity in the ceramic cuprate materials, applications of quantum manybody methods to them were being discussed at RPMBT5. By the time of RPMBT6 in Arad in 1989 the Hubbard model and its variants were firmly ensconced on the agenda.
Since RPMBT5 recurring themes have included heavy fermions, the quantum Hall effect, disordered systems, localization, complex systems and chaos, mesoscopic systems, and the development and application of quantum Monte Carlo methods. Sessions on lattice Hamiltonian problems and strongly correlated electronic systems have become particularly firm fixtures. At the same time new twists on such old friends as quantum fluids and nuclear and subnuclear matter have continued to surprise and delight us, and many of these have been recorded in recent proceedings of the RPMBT series, together with other such topical sessions as BoseEinstein condensates and quantum dots and chaos, and such old friends with renewed vigor as density functional theory. Other recent topics have included new developments in biological physics, quantum computing and allied areas of quantum information thoery, and quantum control.
A major challenge of meetings since around RPMBT10 has been to define and explore the important areas of overlap of quantum manybody theory with quantum field theory and, increasingly, with statistical physics, in such likely arenas as
 phase transitions and the related competing effects of quantum versus thermal fluctuations
 spontaneous symmetry breaking
 the unifying role of gauge invariance (and perhaps other symmetries)
 concepts from complexity theory, including the role of correlations and fluctuations in complex systems, and the competition between analysis and synthesis as modes of understanding manybody systems
 entropy and its generation and flow
Gallery of Past RPMBT Meetings
Feenberg Memorial Medal
The Eugene Feenberg Memorial Medal (or Feenberg Award) was established by the manybody physics community at the Third International Conference on Recent Progress in ManyBody Theories (RPMBT3) in 1983 as a continuing memorial to Eugene Feenberg. It commemorates his wise stewardship of a field that penetrates into all branches of physics; his deep physical insights and great formal achievements; his dedicated service as teacher and mentor; and the exemplary integrity of his personal and professional life. The Feenberg Award thus serves to preserve the memory of the unique and enduring contributions of Eugene Feenberg to physics, especially to the foundations of nuclear physics and microscopic quantum manybody physics of nuclei and quantum fluids.
The Eugene Feenberg Medal is awarded under the auspices of the International Advisory Committee of the series of International Conferences on Recent Progress in ManyBody Theories. The Feenberg Medal, first awarded in 1985, is designated for work that is firmly established and which can be demonstrated to have significantly advanced the field of manybody physics. The work considered can be accumulative contributions sustained over time, or a single important contribution. In appropriate cases, the award can be shared by as many as three people for a single body of work. The Feenberg Award Rules are listed below.
Past recipients have included Walter Kohn (1991) and Anthony J. Leggett (1999), both of whom later won a Nobel Prize for their work, in 1998 and 2003, respectively.
A full list of Feenberg Medallists is given below, together with their respective citations.
List of Feenberg Awardees and their Citations
NAME OF WINNER  YEAR OF AWARD  MEETING OF AWARD  CITATION 
David PINES  1985  RPMBT4; San Francisco [cttee chaired by Chuck Campbell]  "for his seminal contributions to the foundations of quantum manybody theory and for pathbreaking applications to manyelectron systems, neutron stars, and elementary excitations in quantum fluids" 
John W. CLARK  1987  RPMBT5; Oulu [cttee chaired by Ray Bishop]  "for his development of the method of correlated basis functions into one of the most powerful microscopic techniques in quantum manybody theory, and for his applications of it in nuclear physics, especially to nuclear matter" 
Malvin H. KALOS  1989  RPMBT6; Arad [cttee chaired by Fred Ristig]  "for his pioneering, highly original, and profound corpus of work on stochastic methods in quantum manybody theory, specifically for his invention of the Green's function quantum Monte Carlo method, and for his early recognition of the importance of computational physics and highperformance computing to meet its needs" 
Walter KOHN  1991  RPMBT7; Minneapolis [cttee chaired by Chris Pethick]  "for his seminal contributions to theoretical solidstate physics, and for his development of the densityfunctional theory that has revolutionized the calculation of electronic structure for atoms, molecules, surfaces, and solids in physics, chemistry, and materials science" 
David M. CEPERLEY  1994  RPMBT8; Schloss Seggau [cttee chaired by John Clark]  "for his pathbreaking contributions to computational manybody physics that have brought our understanding of fundamental stronglyinteracting quantum systems into a new era and that have opened the way to quantitative microscopic predictions of the properties of real, complex materials" 
Lev P. PITAEVSKIĬ  1997  RPMBT9; Sydney [cttee chaired by Luciano Reatto]  "for his seminal contributions to the theory of Bose superfluids and the helium liquids, specifically for his studies of fluctuations close to the lambda transition and of elementary excitations and vorticity in a superfluid, which have provided a cornerstone of our understanding of key aspects of superfluid 4He and that has now expanded to the field of cold bosonic atoms" 
Anthony J. LEGGETT  1999  RPMBT10; Seattle [cttee chaired by Andy Jackson]  "for his seminal contributions to manybody physics, including the explanation of fundamental properties of superfluid 3He in the millikelvin regime, new insights into macroscopic quantum coherence, and the theoretical exploration of atomic BoseEinstein condensates" 
Philippe NOZIÈRES  2001  RPMBT11; Manchester [cttee chaired by Eckhard Krotscheck]  "for his rigorous development of the theory of a normal Fermi liquid, which provided a firm microscopic foundation for the Landau theory, and for his definitive work on the properties of the free electron gas, particularly in the regime of realistic metallic densities" 
Spartak T. BELYAEV  2004  RPMBT12; Santa Fe [cttee chaired by John Negele]  "for his pioneering work on superfluidity, particularly his independent introduction of the revolutionary concept of anomalous propagators and their application to dilute Bose liquids and to pairing in nuclear matter, which changed our understanding of the physics of quantum manybody systems with a formulation that has become the standard language of the subject" 
Lev P. GOR'KOV  2004  "for his pioneering work on superconductivity that goes far beyond the original BCS theory through his independent development and application of the revolutionary concept of anomalous propagators, a formulation that has become the standard language of the subject"  
Raymond F. BISHOP  2005  RPMBT13; Buenos Aires [cttee chaired by Chuck Campbell]  "for his development of the coupledcluster method toward a comprehensive ab initio approach, and for his innovative applications of it across the full spectrum of subfields of quantum manybody physics" 
Hermann G. KÜMMEL  2005  "for his role in the creation and early development of the coupledcluster method, and for his pioneering highaccuracy applications of it to problems in nuclear and subnuclear physics"  
Stefano FANTONI  2007  RPMBT14; Barcelona [cttee chaired by Jordi Boronat]  "for his leading role in the development and extensive applications of the correlated basis function method, including the advance of Fermi hypernetted chain theory, thereby providing an accurate, quantitative, microscopic description of stronglyinteracting quantum manybody systems, especially for finite atomic nuclei" 
Eckhard KROTSCHECK  2007  "for his leading role in the development and extensive applications of the correlated basis function method, including the advance of Fermi hypernetted chain theory, thereby providing an accurate, quantitative, microscopic description of stronglyinteracting quantum manybody systems, especially for inhomogeneous quantum fluids"  
J. Dirk WALECKA  2009  RPMBT15; Columbus [cttee chaired by Siu Chin]  "for theoretical contributions in electroweak interactions with nuclei, the development of relativistic field theories of the nuclear manybody problem and unparalleled achievements in the education of a generation of young nuclear manybody physicists" 
Gordon A. BAYM  2011  RPMBT16; Bariloche [cttee chaired by David Neilson]  "for the selfconsistent conserving approach to manybody perturbation theory that provided a solid platform for perturbative expansions, and for his novel applications of quantum manybody methods in nuclear physics, astrophysics, highly condensed matter, and atomic physics" 
Leonid KELDYSH  2011  "for his extension of manybody perturbation theory to nonequilibrium systems. This technique continues to play a central role in numerous areas of manybody physics. His work on electronhole plasmas in semiconductors is also recognized"  
Patrick A. LEE  2013  RPMBT17; Rostock [cttee chaired by Hans Weidenmüller]  "for his fundamental contributions to condensed matter theory, especially in regard to the quantum Hall effect, to universal conductance fluctuations, and to the Kondo effect in quantum dots" 
Douglas J. SCALAPINO  2013  "for his imaginative use and development of the Monte Carlo approach and for his groundbreaking contributions to superconductivity" 
Photograph Gallery of Feenberg Awardees
Feenberg Award Rules
In the following, the "Advisory Committee" means the "International Advisory Committee of the Series of International Conferences on Recent Progress in ManyBody Theories," and the "International Conference" or "Conference" means the "International Conference on Recent Progress in ManyBody Theories."
I. General Rules:
A. The Feenberg Medal, or Feenberg Memorial Medal in ManyBody Physics, may be awarded for an important contribution or contributions to manybody theory.
B. In selecting recipients of the Medal, there will be no discrimination based on sex, age, race, nationality, religion, or political beliefs.
C. Members of the operative Selection Committee and their families and relatives are not eligible for receipt of the medal.
II. Award Ceremony:
A. The Medal will be awarded approximately every two years. The ceremony for awarding the Medal will be held at the International Conference for as long as these Conferences exist and retain a format similar to that of the first four Conferences. Thereafter the Advisory Committee should make appropriate arrangements for perpetuating the award and preserving its spirit.
B The Selection Committee will organize the ceremony in collaboration with the organizers of the Conference. The recipient of the award will be invited by the Conference organizers as an invited speaker.
C. The tribute to the awardee will be published in the proceedings of the Conference at which the Feenberg Medal was awarded. In the same proceedings an updated list of patrons, sponsors, and contributors is to be published.
D. Award dates will be fixed by mutual agreement of the Selection Committee (see below) and the Advisory Committee.
III. Selection Committee:
A. The Selection Committee which will decide on the award to be granted at the next Conference, and the Chairperson of that Selection Committee, are to be appointed by the Advisory Committee at each nternational Conference.
IV. Duties of the Selection Committee:
A. The Chairperson of the Selection Committee will organize the work of that Committee according to the present rules.
B. The Selection Committee will organize, with the agreement of the Advisory Committee, the publicity for collecting proposals for the recipient of the Medal.
C. Only one award will be given at each Conference, which award should be given preferably to one person, but to no more than three persons, and in any case for a single corpus of work.
D. The Selection Committee is charged with preparing a citation for general circulation, describing the achievements of the recipient or recipients which led to the award.
V. Rule Changes:
A. Any proposal for changing these rules should be advanced to the Advisory Committee by six months prior to its next meeting.
Brief Biography of Eugene Feenberg
Born October 6, 1906 in Fort Smith, Arkansas, Eugene Feenberg received a B.A. in physics and M.A. in mathematics in 1929 from the University of Texas, Austin after three years of study. After a year and a half traveling in Europe as a Parker Traveling Fellow, visiting the groups of Sommerfeld, Pauli, and Fermi, he received his Ph.D. in 1933 from Harvard University, where his thesis advisor was E. C. Kemble. His thesis included the first statement and proof of the quantum optical theorem.
Subsequently Feenberg was Instructor or Fellow at Harvard, Wisconsin, and the Princeton Institute for Advanced Studies, during which time he collaborated with Wigner, Bardeen, Breit and Phillips among others. After eight years on the faculty of New York University and four years during World War II at Sperry Gyroscope, Feenberg joined the faculty of Washington University (St. Louis) in 1946, and in 1964 became the Wayman Crow Professor of Physics, a chair previously held by Arthur H. Compton, Arthur L. Hughes, and Edward U. Condon.
Much of Feenberg's early research was concerned with the theory of the nucleus, culminating in the publication of Shell Theory of the Nucleus by Princeton University Press in 1955. While he had a careerlong interest in perturbation theory, he turned his primary focus to the theory of quantum fluids, most notably the helium liquids, toward the end of the 1950's, a subject to which he would contribute very importantly for the next two decades until his death in 1977 . Along with his students, he developed the method of correlated basis functions in order to deal with the strong, shortrange repulsion between helium atoms that makes the theory of the helium fluids virtually intractable using ordinary perturbation theory. The early part of this research is the subject of his monograph Theory of Quantum Fluids (Academic Press, 1969).
His willingness to tackle the challenge of strong, shortrange correlations by developing a theoretical, ab initio framework to deal with them from first principles, characterizes much of Feenberg's research. As important as his research is, his personal integrity and high principles continue to serve as an inspiration for his former students and colleagues. The awarding of the Eugene Feenberg Memorial Medal serves as an opportunity to commemorate and perpetuate this man's unique influence on physics and physicists.
It is noteworthy that Issue 1 of Volume 317 of the journal Nuclear Physics A, published on 2 April 1979, is an invited volume dedicated to the memory of Eugene Feenberg. As the opening editorial pages record: "The first issue of this volume (pp. 1286) is composed of papers dedicated to the memory of the late Professor Eugene Feenberg." The issue then begins with an obituary, signed by Keith Brueckner, Chuck Campbell, John Clark, and Henry Primakoff, which ends with a list of Feenberg's publications. The obituary also includes a photograph of Feenberg in front of a chalkboard, which is reproduced here to the right.
The reader interested in more details of Feenberg's life and legacy may find some in a talk by John W. Clark, entitled The Legacy of Eugene Feenberg at the Centenary of His Birth, which is included in the Conference Proceedings of RPMBT13. This article also includes a splendid photograph of Eugene Feenberg in conversation with Joseph Hirschfelder and Richard Norberg, which was taken in the Pfeiffer Physics Library during the 1974 Washington University symposium that celebrated Feenberg's career.
Kümmel Early Achievement Award
The International Advisory Committee responsible for the International Conference series on "Recent Progress in ManyBody Theories" and for awarding the Feenberg Medal, decided at the Thirteenth International Conference on Recent Progress in ManyBody Theories (RPMBT13) in 2005 to establish a new award for young physicists whose published work is a significant contribution to quantum manybody theory. The Kümmel Award Rules are listed below.
The title of this award, "THE HERMANN KÜMMEL EARLY ACHIEVEMENT AWARD IN MANYBODY PHYSICS", honors Prof. Kümmel's long and distinguished career as a leader in the field and as a mentor for younger generations. It should be noted that Prof. Kümmel, together with Prof. Raymond Bishop, received the Feenberg medal in 2005 for their development of the CoupledCluster method.
A full list of Kümmel Awardees is given below, together with their respective citations.
List of Kümmel Awardees and their Citations
NAME OF WINNER  YEAR OF AWARD  MEETING OF AWARD  CITATION 
Frank VERSTRAETE  2007  RPMBT14; Barcelona [cttee chaired by Susana Hernandez]  "for his pioneering work on the use of quantum information and entanglement theory in formulating new and powerful numerical simulation methods for use in strongly correlated systems, stochastic nonequilibrium systems, and strongly coupled quantum field theories" 
Joaquin DRUT  2009  RPMBT15; Columbus [cttee chaired by Mikko Saarela]  "for establishing the thermodynamic and pairing properties of a dilute spin1/2 Fermi gas in the unitary regime using Quantum Monte Carlo and Field Theory methods" 
XiaoLiang QI  2011  RPMBT16; Bariloche [cttee chaired by Gerardo Ortiz]  "for his contribution to the topological field theory of topological insulators" 
Max Metlitski  2013  RPMBT17; Rostock [cttee chaired by Ray Bishop]  "for remarkable advances in the theory of quantum criticality in metals" 
Photograph Gallery of Kümmel Awardees
List of those receiving Honourable Mentions for the Kümmel Award and their citations
Selection Committees for the Hermann Kümmel Early Achievement Award have often also been deeply impressed by the achievements of other nominees. Since the Award may not be split, they have sometimes wished, however, to congratulate those who narrowly missed winning the Award in a given round by giving them Honourable Mentions. A full list of those is given below, together with their citations.
NAME  YEAR OF HONOURABLE MENTION  MEETING AT WHICH MENTIONED  CITATION 
Gregory ASTRAKHARCHIK  2007  RPMBT14; Barcelona [cttee chaired by Susana Hernandez]  "for his most accurate microscopic calculation of the BECBCS crossover in dilute Fermi gases using quantum Monte Carlo techniques whose predictions have been recently confirmed by experiments" 
Robert ZILLICH  2007  "for defining future directions of quantitative manybody theory by combining correlated basis functions methods with large scale Quantum Monte Carlo simulations to explore yet uncharted areas of strongly correlated quantum fluids physics"  
Martin ECKSTEIN  2013  RPMBT17; Rostock [cttee chaired by Ray Bishop]  "for his leading contributions in the development of nonequilibrium dynamical mean field theory" 
Emanuel GULL  2013  "for the development of the ContinuousTime AuxiliaryField Quantum Monte Carlo Method and for its use in understanding the interplay of the pseudogap and superconductivity in the Hubbard model"  
Kai SUN  2013  "for seminal contributions to the theory of topological effects in strongly correlated electron systems" 
Photograph Gallery of those receiving Honourable Mentions for the Kümmel Award
Kümmel Award Rules
TITLE: Hermann Kümmel Early Achievement Award in ManyBody Physics
PURPOSE: To encourage and reward excellence in the field of Quantum ManyBody Theory. The awardee will be selected on the basis of outstanding published work that has been recognised as comprising a significant advance in the field.
PRESENTATION: The award will be presented at the International Conference on Recent Progress in Many Body Theories, to which the awardee will be invited to deliver a plenary talk. The local expenses plus the conference registration fee will be paid for the awardee to the same extent as for other invited speakers.
FREQUENCY: One award, which may not be split among more than one awardee, will be made at each meeting in the Series of International Conferences on Recent Progress in ManyBody Theories.
NOMINATIONS: Nominations should be forwarded to the Selection Committee by the established deadline, after a call issued by the committee. Nominations should include:
 A brief description of the achievement contained in the work for which the award is to be considered, highlighting its importance to the field of quantum manybody theory and the original contributions of the nominee
 A proposed citation for the award
 A curriculum vitae of the nominee
 A list of up to 3 relevant refereed publications that describe the work
 No more than 3 letters of support.
CANDIDATES: Each candidate for the award must normally have received his or her PhD within a period of 6 years prior to the closing date for nominations.
SELECTION COMMITTEE: The awardee will be chosen by a Selection Committee whose Chair and other members will be appointed by the International Advisory Committee of the Series of International Conferences on Recent Progress in ManyBody Theories. Each member of the Selection Committee will serve no more than 2 consecutive terms.
TRIBUTE: A tribute to the awardee will be published in the official Proceedings of the Conference at which the award was made. The Selection Committee is charged with the preparation of the tribute and of the final citation for general circulation.
Brief Biography of Hermann Kümmel
Hermann Kümmel was born in 1922 in Berlin. After obtaining his Diploma degree in 1950 from Humboldt University in East Berlin, he received the Ph.D. in Theoretical Physics from the Free University in West Berlin, where he continued with his research until moving to Iowa State University in Ames, Iowa, USA as a research associate. It was during his two years in Ames that, in collaboration with Fritz Coester, the foundations were laid for the birth of the coupled cluster method (CCM) for which he later became renowned. In 1960, Professors Kümmel and Coester published their seminal ideas of the CCM in the journal Nuclear Physics. After periods at the University of Tübingen, the Max Planck Institute for Nuclear Chemistry in Mainz and the University of Mainz, and at Oklahoma State University as Professor of Physics, Professor Kümmel returned to Mainz as senior scientist at the Max Planck Institute, where he built a strong research group, and Adjunct Professor at the University of Mainz.
In 1969 Professor Kümmel moved with his entire research group to a Chair in Physics at the newly established Ruhr University in Bochum (RUB), Germany, where he established RUB as one of the world's leading centers in quantum manybody theory. In particular, it was at this time that he turned his attention to the theoretical development and computational application of the CCM to nuclear systems specifically and fermionic systems in general. The level of sophistication achieved in Bochum under his leadership, in both formal and computational strength, has rarely been matched elsewhere.
He retired in 1988 at the mandatory retirement age, retaining his association with RUB as Professor Emeritus. To mark his achievements in the field he was also elected as the first Honorary President of the International Advisory Committee for this RPMBT series of international conferences.
The reader interested in more details of Kümmel's life and legacy may find some in a talk entitled A Tribute to Hermann Kümmel on his 80th Birthday, which is included in the Conference Proceedings of RPMBT11.