INDIVIDUAL MODEL EVALUATION FORM

PLEASE ANSWER ALL ITEMS ON A SEPARATE SHEET OF PAPER, OR IN YOUR NOTEBOOK, AS REQUESTED

Model being evaluated

1. Write one complete sentence identifying the problem/question this model is attempting to explain.

2. Do the elements of this model seem to fit together well? Are there any elements in the model that do not seem to agree with other elements? List any such internal inconsistencies you can find.

3. Are there elements in the model that are untestable? In other words, are there elements for which you can not think of a way to design an experiment that would produce data to support or refute the element in question? List any such elements and tell why you think they are untestable. If there is a large number of these elements, limit your answer to the two you think are most important.

4. Are there any elements in the model that seem to be in disagreement with currently accepted facts? List any such elements and briefly say what fact each disagrees with.

5. List the one or two elements of the model that seem to make the most sense to you. Tell why they seem to be so sensible.

6. Do you think this model could be correct? Give the major reasons for your answer.
GROUP MODEL EVALUATION FORM

PLEASE ANSWER ALL ITEMS ON A SEPARATE SHEET OF PAPER, OR IN YOUR NOTEBOOK, AS REQUESTED

1. Each member of the group will explain his/her assigned model to the other members of the group. Make sure each member of the group understands each of the models.

2. Give the major **Evidence-Supported** and **Not Evidence-Supported** elements of each model, as discussed by the team. “Evidence” means “empirical evidence.” This is probably best done by preparing a layout for each model, as shown below, (about 1 half-sheet per model), then fill out the Strengths and Weaknesses for each, as discussed by the team:

<table>
<thead>
<tr>
<th>MODEL A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence-Supported</td>
</tr>
<tr>
<td>__________</td>
</tr>
<tr>
<td>__________</td>
</tr>
<tr>
<td>__________</td>
</tr>
</tbody>
</table>

3. Rank-order the models from “most likely to be correct” to “least likely to be correct”:

 Most likely to be correct:

 Least likely to be correct:

4. Arrange the models in correct chronological sequence, from the most recent to most ancient:

 Most recent:

 Most ancient:

