Lecture 19 – Chromosome structure 2

I. centromere
 A. Region of chromosome that associates with spindle fibers

 B. Terms
 1. kinetochore
 2. two types of centromeres:
 - holocentric
 - localized centromere

 C. chromosomes are characterized by centromere location

<table>
<thead>
<tr>
<th>name</th>
<th>centromere location</th>
<th>appearance in anaphase</th>
</tr>
</thead>
<tbody>
<tr>
<td>metacentric</td>
<td>middle</td>
<td>V</td>
</tr>
<tr>
<td>submetacentric</td>
<td>offcenter</td>
<td>J</td>
</tr>
<tr>
<td>acrocentric</td>
<td>near an end</td>
<td>"hooked" I</td>
</tr>
<tr>
<td>telocentric</td>
<td>at end</td>
<td>I</td>
</tr>
</tbody>
</table>

II. telomere –

 A. First, brief review of replication
B. What would happen during replication at ends of chromosomes?

C. How is the “end” problem dealt with?
 1. bacteria and some viruses:
 2. some linear viruses:
 3. eukaryotic chromosomes:

D. What’s a telomere?
 1.
 2.

E. how do telomeres solve the “end” problem?

F. Implications of telomeres on human health
 1. aging: telomeres not made in some cells
 2. cancer: some cancer cells reactivate telomerase expression