Lecture 33 – Experimental Genetics

I. Experimental genetics – one of main tools for study of biology
 A. General approach:
 1.
 2.
 3.

 B. Often use “model” organisms
 1. model organism – experimentally tractable organism
 2. underlying assumption – what we learn from study of model organism is relevant to human biology

II. Common characteristics of model organisms
 A. short generation time
 B. large # of offspring
 C. easy, inexpensive culture
 D. small size
 E. easy storage
 F. carry out process of interest
 G. relatively simple organisms (generally)
 H. Common model organisms:
 1. *Escherichia coli* – bacterium
 - simple, small
 - short generation time
 - genome sequenced
 - major contributions: basic cellular processes, egs:
 - DNA replication
 - DNA repair
 - chemotaxis
 2. *Saccharomyces cerevisiae* – budding or brewer’s yeast, eukaryote
 - simple, small
 - short generation time
 - genome sequenced
 - major contributions:
 - cell cycle
 - cell differentiation
 - cell-cell signaling
 3. *Caenorhabditis elegans* – nematode
 - small, fairly simple animal
 - short generation time
 - genome sequenced
 - transparent
 - large broods
 - easy storage
 - major contributions:
 - development
 - programmed cell death
 - cell-cell signaling
4. *Drosophila melanogaster* – fruit fly
 - small
 - short generation time
 - genome sequenced
 - many offspring
 - major contributions:
 - development
 - body plan
 - cell-cell signaling

5. *Danio rerio* – zebra fish
 - easy culture, storage
 - genome being sequenced
 - vertebrate
 - transparent embryos
 - major contributions
 - development

 - genome sequenced
 - mammal
 - major contributions:
 - development
 - model for human diseases

7 *Arabidopsis thaliana* – mustard plant
 - easy culture, storage
 - genome sequenced
 - plant model
 - major contributions:
 - plant development and physiology

I. some advantages and disadvantages of each model organism

<table>
<thead>
<tr>
<th>name</th>
<th>advantages</th>
<th>disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>easy growth, storage, short generation</td>
<td>prokaryote</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>easy growth, storage, short generation, eukaryote</td>
<td>single cell</td>
</tr>
<tr>
<td>C. elegans</td>
<td>easy growth, storage, short generation, simple</td>
<td>simple</td>
</tr>
<tr>
<td></td>
<td>multicellular, transparent</td>
<td></td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>easy growth, short generation, more complex</td>
<td>difficult storage, opaque</td>
</tr>
<tr>
<td></td>
<td>multicellular</td>
<td></td>
</tr>
<tr>
<td>R. danio</td>
<td>easy growth, storage, transparent embryo,</td>
<td>larger, longer generation time</td>
</tr>
<tr>
<td></td>
<td>vertebrate</td>
<td></td>
</tr>
<tr>
<td>M. musculus</td>
<td>mammal</td>
<td>few offspring, longer generation time, larger</td>
</tr>
<tr>
<td>A. thaliana</td>
<td>plant, small, short generation time</td>
<td></td>
</tr>
<tr>
<td>H. sapiens</td>
<td>what we want to understand</td>
<td>too numerous to list</td>
</tr>
</tbody>
</table>

III. How to use genetics to study a process.
 A. Generate mutants in order to identify genes required – forward genetics
 1. Design mutant screen

 2. Genetic characterization

 3. Phenotypic characterization

 4. Clone genes
B. examples:
 eg 1: cell cycle in yeast
 eg 2: nervous system development in *C. elegans*

C. How to choose a model organism?
 1. ease of growth, maintenance, etc.
 2. complexity
 3. suitability for intended study