Lectures 39 and 40 – Developmental genetics

I. Developmental genetics
 A. requirements for development
 1. cell proliferation
 2. mechanisms for generating cell differences
 a. specification – cell fates become restricted
 - early \(\rightarrow \) pluripotent
 - later \(\rightarrow \) more restricted in developmental potential
 b. two general mechanisms
 i. asymmetric segregation of determinants
 ii. cell-cell signaling

B. Drosophila early development – A-P axis patterning
 1. Why Drosophila?

 2. fly development in overview:
 - nuclear proliferation
 - nuclear migration
 - cellularization
 - segmentation
 - e.g. T2 = wings, T3 = halteres

 A-P axis patterning
 - Notum
 - Haltere (rudimentary wing)
 - A5-A8
 - A1

 Segmentation:
 - head
 - thorax
 - abdomen
 - 3 segments
 - 3 segments
 - 8 segments
3. anterior-posterior body axis – concentration gradient of key transcription factors that act as morphogens
 - morphogen –

 BCD protein
 bcd mRNA
 bcd/bcd- lack anterior structures
 bcd mRNA
 BCD gradient

 HB-M
 gradient

 hb mRNA
 HB protein
 hb mRNA

 nos mRNA
 NOS protein
 NOS regulates HB
 nos/nos- lack posterior structures
 nos mRNA

4. proteins expressed in gradients regulate expression of next level of patterning, the gap genes

 protein level
 BCD
 HB
 NOS

 KRUPPEL

 mutations in gap gene results in loss of region of embryo

 KNIRPS

 - gap genes divide embryo into distinct domains
 - adjacent gap gene expression often overlaps

5. gap genes regulate pair-rule gene expression
 - pair-rule genes specify alternating segments

 FTZ
 Eves

 mutation in pair-rule gene result in loss of alternate segments

 - pair-rule gene regulation is complex
 - eg: eve in stripe 1 activated by hi HB, in stripe 2 activated by low HB and hi Kruppel

6. pair-rule genes regulate expression of segment polarity genes
 - segment polarity genes regulate A-P identity of cells in each segment
7. what regulates identity of individual segments?
 a. gap genes regulate homeotic gene complexes
 - homeosis

 - all contain homeodomain, act as transcription factors
 - ANT-C proteins regulate segment identity in anterior regions
 - antp specifies one of thoracic segments
 - antp gain-of-function mutations transform antennae to legs
 - BX-C proteins regulate segment identity in posterior
 - btx mutations transform 3rd thoracic segment into 2nd thoracic segment

 b. mutations in homeotic gene alter identity, but # segments is same

8. summary – cascade of regulatory proteins patterns A-P axis

C. what about dorsal-ventral body axis?
 1. established later, when cellularized
 a. cell-cell signaling via secreted ligands
 b. ligands bind cell surface receptors
 2. control of D-V axis via Dorsal transcription factor
 a. 2 forms of DL, inactive cytoplasmic or active nuclear
 b. dl mRNA and DL protein uniform along D-V axis
 c. signaling induces change →DL active, nuclear
D. ensuring at least one cell adopts appropriate fate
 - *C. elegans* vulval development
 1. 6 cells have potential to adopt any of 3 different fates
 - to form vulva, 1 cell must adopt 1° fate, 2 must adopt 2° fate and rest must adopt 3° fate
 2. signal from anchor cell determines fates

- how it works in some detail

How was the vulval development pathway deciphered?
Genetic screens for mutations that produce vulvaless (Vul) or multivulva (Muv) phenotypes
II. Summary
 A. gradient of morphogens establishes initial differences within egg
 - gradient of morphogen may be within syncitium (A-P patterning) or
 extracellular (D-V patterning)
 B. initial gradients regulate expression of downstream components to divide embryo
 into ever smaller regions
 - homeotic genes provide regional identity
 C. many cell-cell signals regulate cell fate
III. Who cares about fly or worm development, what about mammals?
 A. homeotic genes conserved from worms to mammals
 - mammals have many more homeotic genes
 B. vulval signaling molecules function in mammals
 C. homologous molecules have same/similar function in mammals
 D. basic principles are universal