Things I know, but sometimes forget

1 Every finite group acts freely on a product of spheres

It is not difficult to show that any finite group acts freely on a product of S^3's. Indeed, G acts freely on $\prod_{g \in G} i_g S^3$, where S^3 is given a free (g)-action and $i_g S^3 = \text{map}_<(g)(G, S^3)$ is the co-induced G-space.

2 free \times anything $=$ free \times anything else

If X is a G-space, let X_t be the same underlying space with the trivial G-action. Then there is a bijection of G-spaces $G \times X_t \to G \times X$ given by $(g, x) \mapsto (g, gx)$ with inverse map $(g, x) \mapsto (g, g^{-1}x)$. This can be generalized in two ways.

Let $i : H \to G$ be the inclusion of a subgroup. Let $i^* : G$-spaces $\to H$-spaces be the forgetful map given by restricting a G-action to an H-action and let $i_* : H$-spaces $\to G$-spaces be the induction map $i_* X = G \times_H X$. Then i_* is the right adjoint of i^*. Let X be a G-space. There is a homeomorphism

$$i_* i^* X = G \times_H i^* X \to G/H \times X$$

$$[g, x] \mapsto (gH, gx)$$

with inverse map $(gH, x) \mapsto [g, g^{-1}x]$.

If F is a free G-set, choose a set of orbit representatives $B \subset F$ and define $F \times X_t \to F \times X$ by $(gb, x) \mapsto (gb, gx)$ for $b \in B$.
3 Virtually cyclic groups come in three types

A virtually cyclic group is a group with a cyclic subgroup of finite index. They come in three types: finite, groups which surject to \(\mathbb{Z} \) (\(F \rtimes \mathbb{Z} \) with \(F \) finite), and groups which surject to \(D_\infty \) (\(G_0 \ast F \) \(G_1 \) with \(F \) finite and of index two).

Theorem 1. Let \(\Gamma \) be an infinite virtually cyclic group.

1. If there is a central element of infinite order, then there is an epimorphism \(\Gamma \to \mathbb{Z} \).

2. If there is not a central element of infinite order, then there is an epimorphism \(\Gamma \to D_\infty \).

Proof. By intersecting the conjugates of an infinite cyclic subgroup, we may find an normal infinite cyclic subgroup \(C \). Let \(G \) be the finite quotient group.

1) In this case \(G \) acts trivially on \(C \). Embed \(C \) as an index \(|G| \) subgroup of an infinite cyclic group \(C' \). Let \(\Gamma' = C' \times_C \Gamma \). The image of the obstruction cocycle under the map \(H^2(G; C) \to H^2(G; C') \) is trivial, so there exists a splitting \(s : \Gamma' \to C' \) of the inclusion \(C' \hookrightarrow \Gamma' \). Then \(s|_{\Gamma} : \Gamma \to s(\Gamma) \) is the desired epimorphism.

2) Let \(G_0 = \ker(G \to \text{Aut } C) \) (the map is by lifting to \(\Gamma \) and using that conjugation preserves the normal subgroup.) Let \(\Gamma_0 = \pi^{-1}G_0 < \Gamma \). Then there exists an epimorphism \(\phi : \Gamma_0 \to \mathbb{Z} \) by 1). Likewise, \(\Phi : \Gamma \to G \to G/G_0 \cong \mathbb{Z}_2 \) is an epimorphism. Choose \(\gamma \in \Gamma \) so that \(\phi(\gamma) = 1 \). Then \(\Gamma = \Gamma_0 \ast \Gamma_0 \gamma \). Define a epimorphism \(\varphi : \Gamma \to \mathbb{Z} \times \mathbb{Z}_2 \) by \(\varphi(g) = (g,0) \) and \(\varphi(g\gamma) = (g,1) \) for \(g \in \Gamma_0 \).

4 RAPL (= Right adjoints preserve limits)

Left adjoints preserve colimits, too! An adjunction is a pair of functors \(C \xleftarrow{\Phi} D \) and a natural isomorphism of functors

\[
\begin{align*}
D^{\text{op}} \times C & \to \text{Set} \\
D(d, U(c)) & \cong C(F(d), c).
\end{align*}
\]
F is the left adjoint of U and U is the right adjoint of F.

Let \mathcal{I} be a category and suppose \mathcal{C} and \mathcal{D} have \mathcal{I}-limits. Let $f : \mathcal{I} \to \mathcal{C}$ and $g : \mathcal{I} \to \mathcal{D}$ be functors. Then the maps

$$ F(\operatorname{colim} f) \to \operatorname{colim} F \circ f $$
$$ U(\operatorname{lim} g) \leftarrow \operatorname{lim} U \circ g $$

are isomorphisms.

Example 2. Consider the adjunction $\operatorname{Set} \overset{F}{\leftrightarrow} \operatorname{Group}$ with

$$ \operatorname{Group}(F(X), G) \cong \operatorname{Set}(X, U(G)) $$

where F takes a set to the free group generated by that set and $U(G)$ is the forgetful functor taking a group to its underlying set. Let \mathcal{I} be the category with two objects and only identity morphisms. Then

$$ F(X_1 \coprod X_1) \cong F(X_1) \ast F(X_2) $$
$$ U(G_1 \times G_2) \cong U(G_1) \times U(G_2) $$

Example 3. Let R be a ring and B be an R-module. Consider the adjunction

$$ - \otimes B : \operatorname{R-mod} \to \operatorname{R-mod} $$
$$ \operatorname{Hom}(B, -) : \operatorname{R-mod} \to \operatorname{R-mod} $$
$$ \operatorname{Hom}(A \otimes B, C) \cong \operatorname{Hom}(A, \operatorname{Hom}(B, C)) $$

Let \mathcal{I} be a category with only identity morphisms.

$$ (\bigoplus M_i) \otimes B \cong \bigoplus (M_i \otimes B) $$
$$ \operatorname{Hom}(R, \prod M_i) \cong \prod \operatorname{Hom}(R, M_i) $$

5 The degree of a cover equals the degree of a map

Let M be a closed, connected n-manifold. Then $H_n M$ is zero or infinite cyclic. If $H_n M$ is infinite cyclic, then we say M is orientable in which case $H_n M \to H_n(M, M - \{x\})$ is an isomorphism for all $x \in M$.

There is an obvious local degree equals global degree proof of the following theorem, but this one, based on the transfer, is perhaps easier.
Theorem 4. Let $p: \hat{M} \to M$ be a k-fold cover with domain and range closed, connected n-manifolds. If M is orientable then so is \hat{M} and $p_* : H_n \hat{M} \to H_n M$ takes a generator to k times a generator.

Proof. We will define the transfer $\text{tr} : H_i M \to H_i \hat{M}$ and show it is an isomorphism for $i = n$. For a singular i-simplex $\sigma : \Delta^i \to M$ there are exactly k singular i-simplices $\bar{\sigma}^j : \Delta^j \to \hat{M}$, $j = 1, \ldots, k$ so that $p \circ \bar{\sigma}^j = \sigma$. Define the chain map

$$\text{tr}_\# : S_* M \to S_* \hat{M}$$

$$\sum a_\sigma \sigma \mapsto \sum a_\sigma \sum_{j=1}^k \bar{\sigma}^j.$$

Clearly $p_\# \circ \text{tr}_\# : S_* M \to S_* M$ is multiplication by k and the same is true after passing to homology. It follows that $H_n \hat{M}$ is nonzero, hence \hat{M} is orientable.

Note that for a subset A of M, the transfer map is also defined on relative homology $\text{tr}_* : H_i(M, A) \to H_i(\hat{M}, p^{-1}A)$. Choose $x \in M$ and $y \in \hat{M}$ so that $p(y) = x$. Consider the commutative diagram

\[
\begin{array}{ccc}
H_n(M, \hat{M} - \{y\}) & \overset{\approx}{\longrightarrow} & H_n(M, M - \{x\}) \\
\downarrow \text{tr}_* & & \downarrow \text{tr}_* \\
H_n(\hat{M}, \hat{M} - p^{-1}\{x\}) & \overset{\approx}{\longrightarrow} & H_n(M, M - \{x\})
\end{array}
\]

If $\sigma : \Delta^n \to M$ is an embedding with $x \in \sigma(\text{int } \Delta^n)$, then by excision σ represents a generator of $H_n(M, M - \{x\})$. If, in addition, the image of σ is contained in an evenly covered neighborhood, then the images of the lifts $\bar{\sigma}^1, \ldots, \bar{\sigma}^k$ are all disjoint, so y is contained in the image of exactly one of the lifts, say $\bar{\sigma}^1$. Then

$$\pi_*(\text{tr}_*[\sigma]) = \pi_*[\bar{\sigma}^1 + \cdots + \bar{\sigma}^k] = [\bar{\sigma}^1]$$
Hence the composite of the vertical maps on the right are isomorphisms, thus the transfer map on the left is an isomorphism. Since \(p_* \circ \text{tr}_* = k \cdot \text{Id} \), the result follows.

6 Inner automorphisms often induce identities

6.1 Groups

Recall a group is a category with one object.

Lemma 5. Let \(F : \text{Group} \rightarrow \text{Ab} \) be a functor. Suppose \(F(f) = F(g) \) for any natural transformation \(T : f \rightarrow g \) of morphisms of groups. Then for an inner automorphism \(c_\gamma : G \rightarrow G \) of a group, \(F(c_\gamma) = \text{Id}_{F(G)} \).

Proof. There is a natural transformation \(T : \text{Id}_G \rightarrow c_\gamma \) given by the morphism \(\gamma \).

Corollary 6. An inner automorphism induces the identity on the homology of a group.

Proof. Let \((0 \rightarrow 1) \) be the category with two objects and three morphisms, including a morphism from 0 to 1. A natural transformation \(T \) of functors \(F, F' : C \rightarrow D \) induces a functor \((0 \rightarrow 1) \times C \rightarrow D \) and conversely.

Let \(T : f \rightarrow g \) be a natural transformation of morphisms of groups \(f,g : G \rightarrow G' \). This induces a functor \((0 \rightarrow 1) \times G \rightarrow G' \) and hence a homotopy \(B(0 \rightarrow 1) \times BG \rightarrow BG' \) from \(Bf \) to \(Bg\).

Thus we can apply the Lemma above with \(F(G) = H_n(BG) \).

6.2 Rings

Proposition 7. An inner automorphism of a ring \(R \) induces the identity on \(K_n R \).

Proof. Let \(\gamma \in R^\times \). Consider the functor \(c_{\gamma*} : \mathcal{P}(R) \rightarrow \mathcal{P}(R) \) given by \(c_{\gamma*}(P) = R \otimes_{c_\gamma} P \). There is an exact natural transformation \(T : \text{Id} \rightarrow c_{\gamma*} : \mathcal{P}(R) \rightarrow \mathcal{P}(R) \) given by \(P \rightarrow c_{\gamma*}P \ x \mapsto \gamma^{-1}x \). It induces a functor \((0 \rightarrow 1) \times Q(\mathcal{P}(R)) \rightarrow Q(\mathcal{P}(R)) \) and hence a homotopy between the identity and \(BQ(c_{\gamma*}) \).
7 A souped-up Hurewicz Theorem

A space \(X\) is \(n\)-connected if every map \(S^i \to X\) for \(i \leq n\) is null-homotopic. The classical Hurewicz Theorem says that for an \(n\)-connected space, \(\pi_* X \cong H_* X\) for \(i \leq n + 1\).

Theorem 8. Let \(k > 1\). If \(X\) is \((k - 1)\)-connected, the Hurewicz map \(\pi_{k+1} X \to H_{k+1} X\) is onto.

The theorem is not true when \(k = 1\). A counterexample is given by \(S^1 \times S^1\).

Proof. First assume \(X\) is an Eilenberg-MacLane space \(K(G,k)\) with \(G\) and abelian group and \(k > 1\). There is a short exact sequence of abelian groups

\[
0 \to F' \to F \to G \to 0
\]

where \(F\) and \(F'\) are free abelian groups. (Indeed, find a surjection \(\phi : F \to G\) with \(F\) a free abelian group and note that the subgroup \(\ker \phi < F\) is itself free abelian.) By choosing bases for \(F\) and \(F'\), build a CW complex \(Y\) with only a 0-cell, \(k\)-cells, and \((k + 1)\)-cells, with \(\pi_k Y = G\), and with \(H_{k+1} Y = 0\). Build a \(K(G,k)\) by adding on cells of dimension \(k + 2\) and higher. Then \(H_{k+1} K(G,k)\) is a quotient of \(\ker(\partial : C_{k+1} Y \to C_k Y) = \ker(F' \to F) = 0\).

Now we prove the theorem for a general \((k - 1)\)-connected space \(X\) where \(k > 1\). Let \(G = \pi_k X\). Choose a map \(X \to K(G,k)\) which is the identity on \(\pi_k\). Let \(F\) be the homotopy fiber. Then the Serre exact sequence (which follows from the Serre spectral sequence) gives a long exact sequence

\[
H_{2k} F \to H_{2k} X \to H_{2k} K(G,k) \to \cdots
\]

\[
\to H_{k+1} F \to H_{k+1} X \to H_{k+1} K(G,k) \to \cdots
\]

There is a commutative diagram

\[
\begin{array}{ccc}
\pi_{k+1} F & \xrightarrow{\sim} & H_{k+1} F \\
\downarrow & & \downarrow \\
\pi_{k+1} X & \longrightarrow & H_{k+1} X
\end{array}
\]

The left map is an isomorphism because of the homotopy exact sequence and the top map is an isomorphism by the Hurewicz Theorem. Since \(H_{k+1} K(G,k) = 0\) by our above arguments, the Serre exact sequence shows the right hand map is onto. Thus the bottom map is onto as desired. \(\Box\)
8 Poincaré duality and local coefficients

Let X be a connected CW-complex with fundamental group π. If A is a left (right) $\mathbb{Z}\pi$-module, let \overline{A} be the the right (left) $\mathbb{Z}\pi$-module defined by $a\lambda = \overline{\lambda}a$ ($\lambda = a\overline{\lambda}$) where $\sum a_g g = \sum a_g g^{-1}$. Let $\tilde{X} \curvearrowright \pi$ be the right action by deck transformations. For a left $\mathbb{Z}\pi$-module A, let $H_*(X; A)$ be the homology of the chain complex $C_*(X; A) = C_*\tilde{X} \otimes_{\mathbb{Z}\pi} A$. For a right $\mathbb{Z}\pi$-module A, let $H^*(X; A)$ be the cohomology of the cochain complex $C^*(X; A) = \text{hom}_{\mathbb{Z}\pi}(C_*\tilde{X}, A)$. Note that $H^0(X; A) = A_G$ and that $H_0(X; A) = A_G$ (coinvariants). Cup and cap products with local coefficients work as expected:

$$H^i(X; A) \times H^j(X; B) \to H^{i+j}(X; A \otimes_{\mathbb{Z}} B)$$

where we take the diagonal right π-action on $A \otimes_{\mathbb{Z}} B$ and the diagonal left π-action on $A \otimes B$.

Then Poincaré duality states:

Theorem 9. Let X be a closed, connected, oriented n-manifold, $[X] \in H_n(X; \mathbb{Z})$ the fundamental class and A any right $\mathbb{Z}\pi$-module. Then

$$\cap[X] : H^{n-i}(X; A) \xrightarrow{\cong} H_i(X; \overline{A})$$

The same sort of thing is true for nonorientable manifolds; let $[X] \in H_n(X; \mathbb{Z}_w)$ be a generator, then

$$\cap[X] : H^{n-i}(X; A) \xrightarrow{\cong} H_i(X; \overline{A}_w)$$

Remark 10. Poincaré duality for A is a formal consequence of Poincaré duality with $\mathbb{Z}\pi$-coefficients. Indeed, $\cap[X] : C^{n-*}(X; \mathbb{Z}_\pi) \to C_*(X; \mathbb{Z}_\pi)$ is a chain homotopy equivalence, hence so is $\cap[X] : C^{n-*}(X; \mathbb{Z}_\pi) \otimes_{\mathbb{Z}_\pi} A \to C_*(X; \mathbb{Z}_\pi) \otimes_{\mathbb{Z}_\pi} A$. But this equals $\cap[X] : C^{n-*}(X; A) \to C_*(X; \overline{A})$.

Remark 11. This gives intersection pairings. Indeed, let A and B be right $\mathbb{Z}\pi$-modules. Note that $(A \otimes_{\mathbb{Z}} B)_{\pi} = A \otimes_{\mathbb{Z}_\pi} \overline{B}$ with $a \otimes b \leftrightarrow a \otimes \overline{b}$. Then by applying the cup product, then Poincaré duality, the computation of H_0, and the above identification, one sees that for $i + j = n$,

$$H^i(X; A) \times H^j(X; B) \to A \otimes_{\mathbb{Z}_\pi} \overline{B}$$
In the special case where $A = B = \mathbb{Z}_\pi$, there is an isomorphism of $\mathbb{Z}_\pi - \mathbb{Z}_\pi$ bimodules

$$\mathbb{Z}_\pi \otimes_{\mathbb{Z}_\pi} \mathbb{Z}_\pi \to \mathbb{Z}_\pi$$

$$\alpha \otimes \beta \mapsto \alpha \beta$$

This gives a \mathbb{Z}_π-valued intersection pairing.