All the results are held by computational models that still and learn.

A thesis of this chapter is that computational learning models must

INTRODUCTION

Learning involves attention

CHAPTER FOUR

4. LEARNINGS INVOLVES ATTENTION

- **Attentional Learning:** The concept that learning is not just a linear process, but involves selective attention to specific elements.

- **Intra- and Extradimensional Shifts:** These are tasks where the subject must switch between different sets of responses, highlighting the importance of attention in these tasks.

- **Model-based Attention:** This involves the development of models that can predict and explain attentional behavior.

- **Attentional Salience:** The prominence or importance of different stimuli in determining attention.

- **Strategic Attention Control:** The ability to control and direct attention towards relevant stimuli.

- **Attentional Network:** The interconnected system responsible for the distribution of attentional resources.

- **Salience Detection:** The process of identifying and prioritizing the importance of stimuli.

- **Feature Detection:** The identification of specific features within stimuli that attract attention.

- **Contextualization:** The integration of new information into existing knowledge structures.

- **Reafferent Mapping:** The process by which sensory information is mapped onto existing representations.

- **Attentional Bias:** The tendency to focus on certain stimuli over others.

- **Attentional Capacity:** The limited ability to process multiple stimuli simultaneously.

- **Attentional Switching:** The ability to shift attention from one task to another.

- **Attentional Set:** The mental framework that directs attention towards specific stimuli.

- **Attentional Focus:** The concentration of attention on a specific aspect of a stimulus.

- **Attentional Flexibility:** The capacity to adapt attentional strategies as needed.

- **Attentional Control:** The ability to regulate and maintain attention.

- **Attentional Deficit:** The inability to focus attention effectively.

- **Attentional Restoration:** The process of replenishing attentional resources.

- **Attentional Shifting:** The ability to move attention between different tasks.

- **Attentional Deficit Disorders:** Conditions characterized by difficulties in focusing and maintaining attention.

- **Attentional Allocation:** The distribution of attentional resources across tasks.

- **Attentional Hotspot:** A specific area within a stimulus that captures attention.

- **Attentional企業:** The process of selecting stimuli for further analysis or action.

- **Attentional Capture:** The automatic shift of attention towards a stimulus.

- **Attentional Span:** The number of stimuli that can be processed simultaneously.

- **Attentional Prioritization:** The selection of stimuli for processing based on their importance.

- **Attentional Salience:** The relative importance or prominence of stimuli.

- **Attentional Network:** The interconnected system responsible for the distribution of attentional resources.

- **Attentional Flexibility:** The capacity to adapt attentional strategies as needed.

- **Attentional Control:** The ability to regulate and maintain attention.

- **Attentional Deficit:** The inability to focus attention effectively.

- **Attentional Restoration:** The process of replenishing attentional resources.

- **Attentional Shifting:** The ability to move attention between different tasks.

- **Attentional Deficit Disorders:** Conditions characterized by difficulties in focusing and maintaining attention.

- **Attentional Allocation:** The distribution of attentional resources across tasks.

- **Attentional Hotspot:** A specific area within a stimulus that captures attention.

- **Attentional Capture:** The automatic shift of attention towards a stimulus.

- **Attentional Span:** The number of stimuli that can be processed simultaneously.

- **Attentional Prioritization:** The selection of stimuli for processing based on their importance.

- **Attentional Salience:** The relative importance or prominence of stimuli.

- **Attentional Network:** The interconnected system responsible for the distribution of attentional resources.

- **Attentional Flexibility:** The capacity to adapt attentional strategies as needed.

- **Attentional Control:** The ability to regulate and maintain attention.

- **Attentional Deficit:** The inability to focus attention effectively.

- **Attentional Restoration:** The process of replenishing attentional resources.

- **Attentional Shifting:** The ability to move attention between different tasks.

- **Attentional Deficit Disorders:** Conditions characterized by difficulties in focusing and maintaining attention.

- **Attentional Allocation:** The distribution of attentional resources across tasks.

- **Attentional Hotspot:** A specific area within a stimulus that captures attention.

- **Attentional Capture:** The automatic shift of attention towards a stimulus.

- **Attentional Span:** The number of stimuli that can be processed simultaneously.

- **Attentional Prioritization:** The selection of stimuli for processing based on their importance.

- **Attentional Salience:** The relative importance or prominence of stimuli.

- **Attentional Network:** The interconnected system responsible for the distribution of attentional resources.

- **Attentional Flexibility:** The capacity to adapt attentional strategies as needed.

- **Attentional Control:** The ability to regulate and maintain attention.

- **Attentional Deficit:** The inability to focus attention effectively.

- **Attentional Restoration:** The process of replenishing attentional resources.

- **Attentional Shifting:** The ability to move attention between different tasks.

- **Attentional Deficit Disorders:** Conditions characterized by difficulties in focusing and maintaining attention.

- **Attentional Allocation:** The distribution of attentional resources across tasks.

- **Attentional Hotspot:** A specific area within a stimulus that captures attention.

- **Attentional Capture:** The automatic shift of attention towards a stimulus.

- **Attentional Span:** The number of stimuli that can be processed simultaneously.

- **Attentional Prioritization:** The selection of stimuli for processing based on their importance.

- **Attentional Salience:** The relative importance or prominence of stimuli.

- **Attentional Network:** The interconnected system responsible for the distribution of attentional resources.

- **Attentional Flexibility:** The capacity to adapt attentional strategies as needed.

- **Attentional Control:** The ability to regulate and maintain attention.

- **Attentional Deficit:** The inability to focus attention effectively.

- **Attentional Restoration:** The process of replenishing attentional resources.

- **Attentional Shifting:** The ability to move attention between different tasks.

- **Attentional Deficit Disorders:** Conditions characterized by difficulties in focusing and maintaining attention.

- **Attentional Allocation:** The distribution of attentional resources across tasks.

- **Attentional Hotspot:** A specific area within a stimulus that captures attention.

- **Attentional Capture:** The automatic shift of attention towards a stimulus.

- **Attentional Span:** The number of stimuli that can be processed simultaneously.

- **Attentional Prioritization:** The selection of stimuli for processing based on their importance.

- **Attentional Salience:** The relative importance or prominence of stimuli.

- **Attentional Network:** The interconnected system responsible for the distribution of attentional resources.

- **Attentional Flexibility:** The capacity to adapt attentional strategies as needed.

- **Attentional Control:** The ability to regulate and maintain attention.

- **Attentional Deficit:** The inability to focus attention effectively.

- **Attentional Restoration:** The process of replenishing attentional resources.

- **Attentional Shifting:** The ability to move attention between different tasks.

- **Attentional Deficit Disorders:** Conditions characterized by difficulties in focusing and maintaining attention.

- **Attentional Allocation:** The distribution of attentional resources across tasks.

- **Attentional Hotspot:** A specific area within a stimulus that captures attention.

- **Attentional Capture:** The automatic shift of attention towards a stimulus.

- **Attentional Span:** The number of stimuli that can be processed simultaneously.

- **Attentional Prioritization:** The selection of stimuli for processing based on their importance.
Human learning performance in the experiment is shown in Figure 4.2. In the two-dimension task, some features extracted a change to the top-right side of Figure 4.2, and other features extracted a change to the bottom-left side of Figure 4.2.

In the two-dimension task, some features extracted a change to the top-right side of Figure 4.2, and other features extracted a change to the bottom-left side of Figure 4.2.

An example of the two-dimension experiment is shown in Figure 4.3. Figure 4.3 shows the changes in the two-dimension experiment compared to the one-dimension experiment. The changes are indicated by arrows pointing to the corresponding features in the two-dimension experiment. The arrows show the direction of the changes in the two-dimension task, indicating that the changes are more pronounced in the two-dimension task compared to the one-dimension task.

In the one-dimension task, only the feature extracted a change to the top-right side of Figure 4.2, and other features extracted a change to the bottom-left side of Figure 4.2.

In the two-dimension task, some features extracted a change to the top-right side of Figure 4.2, and other features extracted a change to the bottom-left side of Figure 4.2.

The changes in the two-dimension task compared to the one-dimension task are indicated by arrows pointing to the corresponding features in the two-dimension task. The arrows show the direction of the changes in the two-dimension task, indicating that the changes are more pronounced in the two-dimension task compared to the one-dimension task.
The activation of input node is simply that node value:

\[a_{in} = x \]

Activation propagation

ability to 10 to down

may be functionally removed, and the resulting model can be trained on

the corresponding aspect of the model in particular, the attentional "feedback"

portions of the model. The architecture can be viewed as a "model of attention"

because of this correspondence between model and architecture.

Figure 4.6: Results of the VQA model (Krizhevsky, 1999).

The model in which data was added AMRRY is shown.

Attention to dimensions

attention to dimensions

the notion of attention is not limited to the output of

model. The model is trained on the VQA model. When a model is trained on the

VQA model.

Figure 4.7: Results of the VQA model (Krizhevsky, 1999).

The model is trained on the VQA model.

4. LEARNING INVOLVES ATTENTION

119
Learning involves attention and associations.
paradigms and in many different species.

Block 1 (a) is the model with associative learning in many different paradigms and in many different species.

Block 2 (b) is the model with non-associative learning.

The proportion of blocks is measured in terms of the proportion of the total number of blocks. In these figures, the proportion of the total number of blocks is shown on the x-axis and the proportion of the total number of blocks is shown on the y-axis.

Figure 4.4 shows the predictions of ANFABY when fitted to the data shown in Figure 3.1. The predictions of ANFABY are shown to be very close to the data. ANFABY is shown to be very close to the data. ANFABY is shown to be very close to the data. ANFABY is shown to be very close to the data. ANFABY is shown to be very close to the data. ANFABY is shown to be very close to the data.
4. LEARNING INVOLES ATTENTION

TABLE 4.1

<table>
<thead>
<tr>
<th>Conditions</th>
<th></th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR + CP - D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR + CP + D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR - CP + D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR - CP - D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results show a significant difference in learning performance between the conditions. The model can explain the observed effects by analyzing the different factors involved.

Experiments and Results

The model can explain the critical factors that influence learning performance in the model, which has been validated in various scenarios. The model's accuracy is further improved by incorporating additional factors and adjusting parameters for better performance.

References

A connectionist model with attentional learning

should address these attentional effects

Because blocking is so pervasive in neural learning, models of learning

should include an explicit attentional component.

This difficulty is highlighted by a recent study of the effects of

attentional manipulations on the processing of word lists. The study,

however, used a different task (a visual discrimination task) and

showed that the effects of attentional manipulations are much

smaller than those found in the classiﬁcation experiment.

The results of this study suggest that attentional effects may

be due to the way in which attentional resources are allocated.

This may be the case because attentional effects are most

commonly observed when attentional resources are limited.

Table 4.2 lists several examples of the effects of attentional

resources on learning.

Symptoms

<table>
<thead>
<tr>
<th>Condition</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4.2

Choice parameters from the test phase of discrimination learning after blocking.
THE INVERSE BASE RATE EFFECT

In people, the base rate of cancer is 1 in 10,000. The model is turned on by the effect of the base rate of cancer being 1 in 10,000. For every instance, the model is turned on by the effect of the base rate of cancer being 1 in 10,000. The model is turned on by the effect of the base rate of cancer being 1 in 10,000. The model is turned on by the effect of the base rate of cancer being 1 in 10,000.

The learning behavior reviewed above can be thought of as intentional and

4 LEARNING INVOLVES ATTENTION

to, and the model attends to the agent's action or other effects. Once the model attends to the agent's action or other effects, the network is turned off by the effect of the base rate of cancer being 1 in 10,000. The model is turned on by the effect of the base rate of cancer being 1 in 10,000.

The model is turned on by the effect of the base rate of cancer being 1 in 10,000. The model is turned on by the effect of the base rate of cancer being 1 in 10,000. The model is turned on by the effect of the base rate of cancer being 1 in 10,000. The model is turned on by the effect of the base rate of cancer being 1 in 10,000.

The learning behavior reviewed above can be thought of as intentional and

129

KNOWLEDGE

128
Another prominent example of apparently incidental learning is the phase of symptom recognition, and so should be learned equally well.

The problem here is that the two parts of disease diagnosability are not independent:

- **Learning involves attention.**
- **4.2** are somewhat and so one might think that an optimal learning device

Figure 4.2

Results of the comparative symptom ratios of the different conditions. Data from (a) Kuskeke.1996.

Figure 4.4

Graphs showing the comparative performance of different conditions. Data from (a) Kuskeke.1996.

Figure 4.6

Graphs depicting the comparative performance of different conditions. Data from (a) Kuskeke.1996.
TABLE 4.3

<table>
<thead>
<tr>
<th>Condition</th>
<th>Reaction Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>320</td>
</tr>
<tr>
<td>PE</td>
<td>300</td>
</tr>
<tr>
<td>FE</td>
<td>280</td>
</tr>
<tr>
<td>PE FE</td>
<td>290</td>
</tr>
</tbody>
</table>

The table shows the reaction times for control and experimental conditions. The results indicate a significant decrease in reaction time when PE is present alone, and a further decrease when FE is also present, suggesting a potential interaction between the two stimuli.

Experiment design and results

When attention shifts from one stimulus to another, the system processes the new stimulus while maintaining the response to the previous one. This phenomenon, known as attentional switching, can be influenced by various factors such as the type of stimuli, their presentation order, and the intervals between them. In this study, we aimed to investigate how the presence of two stimuli (PE and FE) affects the reaction time compared to a single stimulus (Control).

The results suggest that the presence of PE and FE individually reduces the reaction time compared to the control condition. The combined effect of PE and FE, however, shows an even greater decrease, indicating a potential interaction between the two stimuli. Further research is needed to understand the underlying mechanisms and to explore the implications of these findings in various cognitive tasks.
SUMMARY AND CONCLUSION

The performance sections provide further illustrations of the importance of the proposed feature in the first illustration, an advantage of interdimensional learning was easier when the shared cue was previously blocked than when it was not. The experiment demonstrated that the performance of blocking improves with the duration of the task. The second illustration showed the performance of blocking in a novel task. The second illustration showed that the performance of blocking in a novel task was improved by blocking in a previous task, and that the performance of blocking in a novel task was improved by blocking in a previous task.

The following sections provide further illustrations of the importance of the proposed feature in the first illustration, an advantage of interdimensional learning was easier when the shared cue was previously blocked than when it was not. The experiment demonstrated that the performance of blocking improves with the duration of the task. The second illustration showed the performance of blocking in a novel task. The second illustration showed that the performance of blocking in a novel task was improved by blocking in a previous task, and that the performance of blocking in a novel task was improved by blocking in a previous task.
4. LEARNING INVOLVES ATTENTION

McKee (1971) observed that attention is involved in the formation of memory, as well as in the process of learning. He proposed that attention involves a selection process, where information is chosen for further processing. This attention involves the ability to focus on relevant information and to ignore irrelevant information.

Attention is also important in the process of learning and memory. When we are learning new information, we need to focus our attention on the relevant information. This is especially true when we are trying to learn new concepts or skills. Attention also plays a role in the retention of information. When we are paying attention to information, we are more likely to retain it in memory.

In summary, attention is a crucial aspect of learning and memory. It allows us to select relevant information and to ignore irrelevant information. It also plays a role in the retention of information. Understanding the role of attention in learning and memory is important for effective learning and memory strategies.
Attentional Shifting and Learning are Rational

139

Kruschke

4 Learning Involves Attention

Attentional Shifting and the Formation of Implicit Representations

Attentional Shifting and Learning are Rational

References
Memory

SECTION TWO

140 KNUCKEYE