Functional Imaging: A review of fMRI, DTI and Non-invasive Perfusion Imaging

Kristine Mosier DMD, Ph.D.
Neuroradiology & Imaging Science
Department of Radiology
Clinical fMRI, Chief Head & Neck Imaging
Associate Professor of Radiology, Neuroscience and Biomedical Engineering
Indiana University School of Medicine & IUPUI

Overview

- Functional Brain Mapping
 - Neurophysiology and hemodynamic basis of BOLD / CBF.
 - fMRI paradigms, data acquisition and processing.
 - Clinical case examples.
- Diffusion Tensor Imaging (DTI) & Fiber-tracking.
- Non-invasive Perfusion Imaging (Arterial Spin Labeling).
- Cases

BOLD-fMRI
Functional Imaging: fMRI

- Brain activity can be mapped using either BOLD technique (Blood Oxygen Level Dependent) or rCBF.
- Both BOLD and CBF changes dependent on neurovascular coupling.
- BOLD signal most closely correlated with LFP (local field potentials).
- fMRI performed in the neurosurgical setting to map eloquent cortex.
Slide 7

BOLD mechanism: summary

- Neuronal activity → focal net increase in blood flow and oxygenation.
- Increase in focal oxygenated blood → decrease in deoxyhemoglobin → less T2* effect → increase in signal intensity.

Slide 8

![Diagram](image)

Slide 9

![Diagram](image)
Slide 10

BOLD fMRI: contrast mechanism

- Relative mismatch between O_2 delivery and O_2 extraction during activation period
- Blood flow is increased to activated regions of brain
- O_2 extraction also increased, but less than increase in O_2 delivery

Slide 11

BOLD fMRI: contrast mechanism

- Thus increased oxyHb at post-capillary level \rightarrow decreased deoxyHb
- DeoxyHb is paramagnetic
 \rightarrow decreases T_2^* (decreases signal)
- Decrease in local deoxyHb results in increased signal intensity on T_2^*-wtd images (+1-5%)
Slide 13

Basis of BOLD fMRI

Slide 14

Raw Image Time Series

visual stim vs no stim

Slide 15

Difference Image Time Series

visual stim vs no stim
• Peak BOLD signal arises at the level of the post-capillary venule.
• Problem: contribution to signal from draining veins spatial, temporal artifact.
• Animal expt. at high field (e.g. 7-9T) within 200 µm of LFP.
• Humans: several studies BOLD accurate to within 1cm of electrode.
Slide 19

fMRI Data acquisition

- Acquire time-series of fast images while subject performs sensorimotor, language or cognitive task.
- Process time-series data using statistical methods & compare signal change during task performance with signal during rest / baseline.
- **Accurate processing**: need to remove drift, motion, physiological noise.

Slide 20

fMRI: Study Overview

1. Patient Preparation
2. Paradigm Design
3. Data Acquisition
4. Image Reconstruction and Processing
5. Statistical Maps Computation
6. Visualization of Maps and Analysis
7. Workstation
8. Data Transfer

Slide 21

[Image of brain scan with text: Blood Oxygenation Level-Dependent (BOLD) 2D]

- Acquired Image
- Dynamic BOLD
- Blood Flow-Time Curve
Slide 22

Slide 23

Slide 24
Slide 25

Slide 26

Slide 27
Slide 28

Slide 29

Slide 30
Slide 31

fMRI Post-Processing: FT paradigm

Mean + T-map

Slide 32

fMRI Post-Processing: FT paradigm

GLM

Slide 33

fMRI: Typical Tasks

- Sensorimotor
 - Gross motor: Finger-tapping, tongue tapping
 - Fine motor: object manipulation (Mosier)
 - Sensory: Visual field / retinotopic mapping
- Language: expressive & receptive speech
 - Expressive speech: Word generation, Object naming, Rhyming
 - Receptive speech: Passive Listening, Rhyming
- Memory: Working memory
- Other: Swallowing / articulated speech (Mosier)
- Not yet standardized: ASFNR working on that!
Slide 34

fMRI: Choice of Tasks

<table>
<thead>
<tr>
<th>Location</th>
<th>Gross Motor</th>
<th>Fine Motor</th>
<th>Language</th>
<th>Visual Field</th>
<th>Working Memory</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>+</td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parietal</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporal</td>
<td>+/-</td>
<td>+</td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occipital</td>
<td>+</td>
<td>O/Nect</td>
<td>Naming</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insular</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Slide 35

fMRI: Patient Selection

- Intracranial lesion requiring eloquent cortex mapping.
- Patient able to undergo MR imaging at 1.5T or 3T (only 3T at IUPUI).
- AVM patients: specific clips not safe @ 3T.
- Stents: not all safe @ 3T
- Body habitus
- Claustrophobia
- Able to speak & understand English
- Able to read @ 6th grade level.
- Peds +/-

Slide 36

Clinical fMRI: Neurosurgical Mapping
Case 1: Oligodendroglioma; Bilateral Finger tapping

Central sulcus

Pre-central gyrus

Case 1: Oligodendroglioma; Object manipulation - right hand: fine motor, sensory - tactile, proprioception

Case 1: Oligodendroglioma Language: Word Generation: speech execution
Case 1: Oligodendroglioma Language: Naming; semantic language: speech reception and execution

Case 1: Oligodendroglioma Language: Rhyming; semantic language

Case 2: Finger-tapping
Slide 43

Case 2: Object Manipulation

Slide 44

Case 2: Working Memory

Slide 45

fMRI Brain Mapping

Advantages:
- Non-invasive mapping of eloquent cortex w/ maps co-registered to anatomical images.
- In many institutions, this has completely replaced WADA testing.

Disadvantages:
- Not all subjects are candidates: MRI safety, patient must be awake & cooperative, pediatrics.
- Requires a team with expertise: neuroradiology, neurosurgery, neuroradiologist, MRI physicists, image processing specialists, etc.
- Indirect measure of neuronal activity.
Case 4: Oligoastrocytoma < Gr III

Left Chkbd

Right Chkbd

Face Matching

DIFFUSION
Slide 58

- Anisotropic Diffusion
- Parallel Fibers

Slide 59

- Measuring the tissue of the diffusion tensor
- Measuring diffusion using a diagonal axis

Slide 60

DTI

Diffusion weighted gradients must be applied in multiple directions to obtain the information required to generate the Diffusion Tensor (D).

\[
D = \begin{bmatrix}
D_{xx} & D_{xy} & D_{xz} \\
D_{yx} & D_{yy} & D_{yz} \\
D_{zx} & D_{zy} & D_{zz}
\end{bmatrix}
\]

Eigenvectors

Eigenspectrum
Slide 61

Slide 62

Slide 63

Case 5 - DTI/FA
Case 6: 54 y.o. w/partial complex seizures & speech arrest

Case 6: Bilateral Finger-tapping

Case 6: Word Generation