Neurophysiology

Chapters 10-12

Control and Integration

• Nervous system
 – composed of nervous tissue
 – cells designed to conduct electrical impulses
 – rapid communication to specific cells or groups of cells

• Endocrine system
 – composed of various tissue types
 – cell communication solely through chemical messengers
 – slow speed of action, broadcast

Nervous System Organization:
Radial Symmetric Animals

• Neural Net
 – Cnidarians and ctenophorans
 – Echinoderms
 – no specific CNS

Nervous System Organization:
Bilateral Symmetric Animals

• Nerve Cords
 – Longitudinally oriented tracts of neurons, with lateral commissures

• Evolutionary Trends
 – Reduction of nerve cord numbers
 – Cephalization – anterior concentration of nerve tissue (brain)

Nervous System Organization:
Bilateral Symmetric Animals

• Central Nervous System
 – Brain + Spinal Cord
 – control center (integration)

• Peripheral Nervous System
 – cranial nerves and spinal nerves
 – connects CNS to sensory receptors, muscles and glands

Neurons

• Cell Body
 – nucleus and organelles

• Dendrites
 – receive information

• Axon
 – conduct electrical signals (action potentials)
 – axon hillock - site where AP’s originate
 – axon terminals - where chemical signals are released
Membrane Potentials

• All cell membranes are electrically polarized
 – Unequal distribution of charges
 – Membrane potential (mV) = difference in charge across the membrane
 – Due to unequal ion concentrations across cell membrane (fixed anions)

Ion Movements

• K⁺
 – [K⁺] higher inside cell than outside
 – Attracted to fixed anions inside cell
 – High membrane permeability
 – Flows slowly out of cell

• Na⁺
 – [Na⁺] higher outside cell than inside
 – Attracted to fixed anions inside cell
 – Low membrane permeability
 – Flows slowly into cell

Equilibrium Potential

• Equilibrium (no net movement) will be reached when a particular electrical potential is reached
• Equilibrium potential = theoretical electrical potential at which the net flow of ions across the membrane is 0
 – balance between EG and CG is achieved

Equilibrium Potential

• Equilibrium potential is calculated for a particular ion using the Nernst Equation
 \[E_x = \frac{RT}{zF} \ln\left(\frac{[X_o]}{[X_i]}\right) \]
 • \(E_x \) = equilibrium potential (mV)
 • \(R \) = gas constant (8.31 J/(K*mol))
 • \(T \) = temperature (K)
 • \(z \) = charge of the ion
 • \(F \) = Faraday’s constant (96500 coulombs/mole)
 • \([X_o]\) and \([X_i]\) = concentrations of ion “X” inside and outside the cell

Equilibrium Potential

• For equilibrium potentials of Na⁺ and K⁺ in eutherian mammals (\(T_b = 310 \) K)
 \[E_x = 61 \log \left(\frac{[X_o]}{[X_i]}\right) \]
 • Equilibrium potential for K⁺ (\(E_K \)) = -90 mV
 • Equilibrium potential for Na⁺ (\(E_Na \)) = +60 mV

Distribution of Inorganic Ions

• Different ions unevenly distributed across cell membrane
• Each has own specific equilibrium potential and membrane permeability

Table 11.1
Resting Potentials

- **Resting potential**
 - Typical membrane potential for cells
 - Depends on concentration gradients and membrane permeabilities for different ions involved
 - **Goldman Equation**
 $$ V_m = \frac{RT}{F} \ln \frac{P_K [K^+]_o + P_Na [Na^+]_o + P_Cl [Cl^-]_o}{P_K [K^+]_i + P_Na [Na^+]_i + P_Cl [Cl^-]_i} $$
 - -65 to -85 mV (unequal to E_K or E_{Na^+})
 - $[Na^+]$ and $[K^+]$ inside the cell are maintained using Na+/K+ pumps

Electrical Activity of Neurons: Electrical Signals

- **Electrical signals**
 - due to changes in membrane permeability and altering flow of charged particles
 - changes in permeability are due to changing the number of open membrane channels

Membrane Proteins Involved in Electrical Signals

- **Non-gated ion channels** (leak channels)
 - always open
 - specific for a particular ion
- **Gated Ion channels**
 - open only under particular conditions (stimulus)
 - voltage-gated, ligand-gated, stress-gated
- **Ion pumps**
 - active (require ATP)
 - maintain ion gradients

Types of Electric Signals: Graded Potentials

- occure in dendrites / cell body
- small, localized change in membrane potential
 - change of only a few mV
 - opening of chemically-gated or physically-gated ion channels
 - travels only a short distance (few mm)
- a triggered event
 - requires stimulus
 - e.g. light, touch, chemical messengers
- graded
 - ↑ stimulus intensity → ↑ change in membrane potential

Types of Electric Signals: Action Potentials

- begins at the axon hillock, travels down axon
- brief, rapid reversal of membrane potential
 - Large change (~70-100 mV)
 - Opening of voltage-gated Na⁺ and K⁺ channels
 - self-propagating - strength of signal maintained
- triggered
 - membrane depolarization (depolarizing graded potential)
- "All or none"
 - axon hillock must be depolarized a minimum amount (threshold potential)
 - if depolarized to threshold, AP will occur at maximum strength
 - if threshold not reached, no AP will occur
Action Potential: Depolarization

- Triggering event (graded potential) causes membrane to depolarize
- Slow increase until threshold is reached
- Voltage-gated Na⁺ channels open
 - Na⁺ enters cell → further depolarization → more channels open → further depolarization
- Membrane reverses polarity

Figs 11.12, 11.13

Action Potential: Repolarization

- Na⁺ channels close
- Delayed opening of voltage-gated K⁺ channels
 - K⁺ rushes out of the cell
 - Membrane potential restored
- K⁺ channels close
 - [Na⁺] and [K⁺] restored by the Na⁺-K⁺ pump

Fig 11.12

Action Potential Propagation

- Na⁺ moving into one segment of the neuron quickly moves laterally inside the cell
- Depolarizes adjacent segment to threshold

Fig 11.23

Conduction Velocity

- Conduction velocity
 - Speed at which the action potential travels down the length of an axon
 - Dictates speed of response
- Velocity directly related to axon diameter
 - Increased diameter lowers internal resistance to ion flow
 - $V \propto \sqrt{D}$ in unmyelinated axons
 - $V \propto D$ in myelinated axons

Fig 11.24

Action Potential Propagation: Myelinated Axons

- Myelin - lipid insulator
 - Membranes of certain glial cells
- Nodes of Ranvier contain lots of Na⁺ channels
- Saltatory conduction
 - Signals "jump" from one node to the next
 - AP conduction speed 50-100x
- Vertebrates tend to have more myelinated axons than invertebrates

Fig 11.25

Chemical Synapses

- Presynaptic neuron
 - Synaptic terminal bouton
 - Contains synaptic vesicles filled with neurotransmitter
- Synaptic cleft
 - Space in-between cells
- Postsynaptic neuron
 - Subsynaptic membrane
 - Contains receptors that bind neurotransmitter

Fig 11.1
Chemical Synapses

- Many voltage-gated Ca\(^{2+}\) channels in the terminal bouton
 - AP in knob opens Ca\(^{2+}\) channels
 - Ca\(^{2+}\) rushes in.
- Ca\(^{2+}\) induced exocytosis of synaptic vesicles
- Transmitter diffuses across synaptic cleft and binds to receptors on subsynaptic membrane

Types of Postsynaptic Potentials

- **excitatory postsynaptic potentials (EPSPs)**
 - Transmitter binding opens Na\(^{+}\) channels in the postsynaptic membrane
 - Small depolarization of postsynaptic neuron
 - More positive inside the cell
 - Closer to threshold

- **inhibitory postsynaptic potentials (IPSPs)**
 - Transmitter binding opens K\(^{+}\) or Cl\(^{-}\) ion channels
 - K\(^{+}\) flows out or Cl\(^{-}\) flows in down gradients
 - Small hyperpolarization of postsynaptic neuron
 - More negative inside cell
 - Further from threshold

Summation

- **spatial summation**
 - Numerous presynaptic fibers may converge on a single postsynaptic neuron
 - Additive effects of numerous neurons inducing EPSPs and IPSPs on the postsyn. neuron
- **temporal summation**
 - Additive effects of EPSPs and IPSPs occurring in rapid succession
 - Next synaptic event occurs before membrane recovers from previous event