Abstract

Method: Superconducting screens provide a sharp transition between two magnetic field regions. This can be used to create a non-adiabatic transition and hence provide efficient spin reversal (π flip).[1]

Motivation: High temperature superconducting screens (YBCO) eliminate the need for cryogens. This allows the creation of a turn key device [2]. Our aim is to create a low maintenance and cost effective compact spin flipper for use in a variety of applications including large beams.

Preliminary measurements using permanent magnets

350 nm thick YBCO film capped with 100 nm of gold on a 78 x 100 x 0.5 mm sapphire substrate (Theva, Germany) mounted in an oxygen free copper high conductivity frame.

Test measurement on SESAME beamline at LENS- simple guide field using permanent magnets – orientation swapped for flipping/non flipping.

Magnetic field at YBCO film ~12 G
Temperature ~8.5 K (measured on copper frame)
Flipping ratios ~16 at 5.5 angstroms
Beam diameter 40 mm
Corresponds to ~95% efficiency
– works despite crude guide field (and with large beam)

Cold finger and heat shield detail

Low cross section (57 mm) allows for close placement of electromagnets
Sapphire windows for high transmission
All aluminium construction of vacuum vessel to limit magnetic contamination.

Guide field electromagnet design

Finite element simulation of air cooled guide field electromagnet and super conducting film was produced using *Radia* [3].

Vector plot of field profile to the superconductor - shows uniformity over large region – for efficient spin transport (high flipping efficiency)

Vertical magnetic field (Z on diagram above, $Y=0$, $X=5$ mm) component showing guide field across ~40 mm

Bz>12 G

Exploded view of design

-Aluminium vacuum vessel
-Mu-metal box
-Oxygen free copper high conductivity frame

*Mu-metal box is placed around film during cooling to prevent flux trapping
**Guide field can be mounted either vertically or horizontally

Summary

Preliminary measurements show suitability of chosen film
Small device footprint along beamline ~20 cm
Will be tested on SEAME beamline at LENS

References

1. J.B. Forsyth, At Energy Rev. 17 (1979) 345

We would like to thank E. LeBlanc – Berna (ILL) for useful discussions on the heat shield and window design. We also acknowledge J. Doakow (LENS) for design input.