Neutron Spin Echo: Probing Dynamics in Complex Fluids

By

Roger Pynn*

Indiana University and the Spallation Neutron Source

*With contributions from B. Farago (ILL), S. Longeville (Saclay), M. Rheinstadter (U. Missouri) and A. Vorobiev (ESRF)
What Do We Need for a Basic Neutron Scattering Experiment?

- A source of neutrons
- A method to prescribe the wavevector of the neutrons incident on the sample
- (An interesting sample)
- A method to determine the wavevector of the scattered neutrons
- A neutron detector

Incident neutrons of wavevector k_i

Scattered neutrons of wavevector, k_f

Sample

Detector

$E = \hbar \omega = \frac{\hbar^2}{2m} (k_i^2 - k_f^2)$

We usually measure scattering as a function of energy (E) and wavevector (Q) transfer.
Instrumental Resolution

- Uncertainties in the neutron wavelength & direction of travel imply that \(Q \) and \(E \) can only be defined with a certain precision.

- When the box-like resolution volumes in the figure are convolved, the overall resolution is Gaussian (central limit theorem) and has an elliptical shape in \((Q,E)\) space.

- The total signal in a scattering experiment is proportional to the phase space volume within the elliptical resolution volume – the better the resolution, the smaller the resolution volume and the lower the count rate.
The Goal of Neutron Spin Echo is to Break the Inverse Relationship between Intensity & Resolution

- **Traditional** – define both incident & scattered wavevectors in order to define E and Q accurately

- **Traditional** – use collimators, monochromators, choppers etc to define both k_i and k_f

- **NSE** – measure as a function of the *difference* between appropriate components of k_i and k_f (original use: measure $k_i - k_f$ i.e. energy change)

- **NSE** – use the neutron’s spin polarization to encode the difference between components of k_i and k_f

- **NSE** – can use large beam divergence &/or poor monochromatization to increase signal intensity, while maintaining very good resolution
The Underlying Physics of Neutron Spin Echo (NSE) Technology is Larmor Precession of the Neutron’s Spin

- The time evolution of the expectation value of the spin of a spin-1/2 particle in a magnetic field can be determined classically as:

\[
\frac{d\vec{s}}{dt} = \gamma \vec{s} \wedge \vec{B} \quad \Rightarrow \quad \omega_L = |\gamma|B
\]

\[
\gamma = -2913 \times 2\pi \text{ Gauss}^{-1} \cdot \text{s}^{-1}
\]

- The total precession angle of the spin, \(\phi \), depends on the time the neutron spends in the field: \(\phi = \omega_L t \)

<table>
<thead>
<tr>
<th>B (Gauss)</th>
<th>(\omega_L) (10^3 rad.s(^{-1}))</th>
<th>N (msec(^{-1}))</th>
<th>Turns/m for 4 Å neutrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>183</td>
<td>29</td>
<td>(~29)</td>
</tr>
</tbody>
</table>
Larmor Precession allows the Neutron Spin to be Manipulated using π or $\pi/2$ Spin-Turn Coils: Both are Needed for NSE

- The total precession angle of the spin, ϕ, depends on the time the neutron spends in the B field

$$\phi = \omega_L t = \gamma B d / v$$

Number of turns = \frac{1}{135.65}.B[Gauss].d[cm].\lambda[Angstroms]
Neutron Spin Echo (NSE) uses Larmor Precession to “Code” Neutron Velocities

- A neutron spin precesses at the Larmor frequency in a magnetic field, B.
 \[\omega_L = \gamma B \]

- The total precession angle of the spin, ϕ, depends on the time the neutron spends in the field
 \[\phi = \omega_L t = \gamma B d / v \]

\[\Box \text{Neutron velocity, } v \]

\[\Box \text{Number of turns} = \frac{1}{135.65} \cdot B [\text{Gauss}] \cdot d [\text{cm}] \cdot \lambda [\text{Angstroms}] \]

The precession angle ϕ is a measure of the neutron’s speed v.
The Principles of NSE are Very Simple

• If a spin rotates anticlockwise & then clockwise by the same amount it comes back to the same orientation
 – Need to reverse the direction of the applied field
 – Independent of neutron speed provided the speed is constant

• The same effect can be obtained by reversing the precession angle at the mid-point and continuing the precession in the same sense
 – Use a π rotation

• If the neutron’s velocity, v, is changed by the sample, its spin will not come back to the same orientation
 – The difference will be a measure of the change in the neutron’s speed or energy
Simulations

Classical picture

- Single neutron
- Neutrons of different velocities

Quantum Mechanical Picture

- Quasi-elastic scattering
- Inelastic scattering
In NSE*, neutron spins precess before and after scattering, and a polarization echo is obtained if scattering is elastic.

Initially, neutrons are polarized along the z-axis. Rotate spins into the x-y precession plane.

Allow spins to precess around z: slower neutrons precess further over a fixed path-length.

Rotate spins through π about the x-axis.

Elastic scattering event.

Rotate spins to z and measure polarization.

Allow spins to precess around z: all spins are in the same direction at the echo point if $\Delta E = 0$.

Final Polarization, $P = \langle \cos(\phi_1 - \phi_2) \rangle$

* F. Mezei, Z. Physik, 255 (1972) 145
For Quasi-elastic Scattering, the Echo Polarization depends on Energy Transfer

- If the neutron changes energy when it scatters, the precession phases before & after scattering, ϕ_1 & ϕ_2, will be different:

 using \[\hbar \omega = \frac{1}{2} m(v_1^2 - v_2^2) \approx mv\delta v \]

 \[\phi_1 - \phi_2 = \gamma Bd \left(\frac{1}{v_1} - \frac{1}{v_2} \right) \approx \frac{\gamma Bd}{v^2} \delta v \approx \frac{\gamma B d \hbar \omega}{mv^3} = \frac{\gamma B d m^2 \lambda^3 \omega}{2\pi \hbar^2} \]

- To lowest order, the difference between ϕ_1 & ϕ_2 depends only on ω (i.e. $v_1 - v_2$) & \underline{not} on v_1 & v_2 separately

- The measured polarization, $\langle P \rangle$, is the average of $\cos(\phi_1 - \phi_2)$ over all transmitted neutrons i.e.

 \[\langle P \rangle = \frac{\iint I(\lambda)S(\bar{Q}, \omega) \cos(\phi_1 - \phi_2) d\lambda d\omega}{\iint I(\lambda)S(\bar{Q}, \omega) d\lambda d\omega} \]
Neutron Polarization at the Echo Point is a Measure of the Intermediate Scattering Function

\[
\langle P \rangle = \frac{\iiint I(\lambda)S(\vec{Q}, \omega)\cos(\phi_1 - \phi_2) d\lambda d\omega}{\iiint I(\lambda)S(\vec{Q}, \omega) d\lambda d\omega} \approx \left\langle \int S(\vec{Q}, \omega) \cos(\omega \tau) d\omega \right\rangle = I(\vec{Q}, \tau)
\]

where the "spin echo time" \(\tau = \gamma B d \frac{m^2}{2\pi h^2} \lambda^3 \)

- \(I(\vec{Q}, t) \) is called the intermediate scattering function
 - Time Fourier transform of \(S(\vec{Q}, \omega) \) or the \(\vec{Q} \) Fourier transform of \(G(\vec{r}, t) \), the two particle correlation function

- NSE probes the sample dynamics as a function of time rather than as a function of \(\omega \)

- The spin echo time, \(\tau \), is the “correlation time”

<table>
<thead>
<tr>
<th>Bd (T.m)</th>
<th>(\lambda) (nm)</th>
<th>(\tau) (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>0.6</td>
<td>40</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>186</td>
</tr>
</tbody>
</table>
Neutron Polarization is Measured using an Asymmetric Scan around the Echo Point

The echo amplitude decreases when \((Bd)_1\) differs from \((Bd)_2\) because the incident neutron beam is not monochromatic. For elastic scattering:

\[
\langle P \rangle \sim \int I(\lambda) \cos \left(\frac{\gamma m}{h} \{ (Bd)_1 - (Bd)_2 \} \lambda \right) d\lambda
\]

Because the echo point is the same for all neutron wavelengths, we can use a broad wavelength band and enhance the signal intensity.
Field-Integral Inhomogeneities cause τ to vary over the Neutron Beam: They can be Corrected

- Solenoids (used as main precession fields) have fields that vary as r^2 away from the axis of symmetry because of end effects ($\text{div } B = 0$)

- According to Ampere’s law, a current distribution that varies as r^2 can correct the field-integral inhomogeneities for parallel paths

- Similar devices can be used to correct the integral along divergent paths

Fresnel correction coil for IN15
What does a NSE Spectrometer Look Like?
IN11 at ILL was the First

\[\tau_{\text{max}} \sim 50 \text{ ns at } \lambda = 10 \, \text{Å} \]
IN-11C and IN15

\[\tau_{\text{max}} \sim 12 \text{ ns at } \lambda = 10\text{Å for IN11-C and } \tau_{\text{max}} \sim 400 \text{ ns at } \lambda = 15\text{Å} \]
NSE is also available at the NCNR

$\tau_{\text{max}} \sim 50 \text{ ns}$
Neutron Spin Echo has significantly extended the (Q,E) range to which neutron scattering can be applied.
Something Simple: A Single Diffusing Particle*

\[S(\tilde{Q}) = \left\langle \sum_{i,j} b_i b_j e^{-\tilde{Q}.(\vec{r}_i - \vec{r}_j)} \right\rangle \]

\[S(\tilde{Q}) = \left(3 \rho R^3 \frac{j_1(QR)}{QR} \right)^2 \]

\[S(\tilde{Q}, t) = \left\langle \sum_{i,j} b_i b_j e^{i\tilde{Q}.[\vec{r}_i(0) - \vec{r}_j(t)\}] \right\rangle \]

\[S(\tilde{Q}, t) = S(\tilde{Q})e^{-DQ^2t} \]

Viewgraph courtesy of B. Farago
Polymer Reptation*

10% marked polymer chain(H) in deuterated matrix of the same polymer melt

at short time => Rouse dynamics 1/tau ~ q^4

at longer times starts to feel the “tube” formed by the other chains (degennes)

*viewgraph courtesy of B. Farago

Neutron Spin Echo study of Deformations of Spherical Droplets

Courtesy of B. Farago
Mesoscopic Membrane Fluctuations

Dispersion relation

\[\tau^{-1} (\text{ns}^{-1}) \]

Contains ‘dynamic’ information

Elementary excitations

- Propagating
- Oscillating
- Relaxing

Thermal membrane fluctuations

Dispersion relation contains information about dynamic oscillation frequencies and relaxation rates.
Collective Excitations in Model Membranes*

The ‘Neutron Window’

DMPC – d54

0.002Å⁻¹<q||<3Å⁻¹ & 1ps<τ<1µs

*Measurements made by M. Rheinstadter
Other Larmor Precession Methods

• Neutron resonance spin echo (NRSE)
 – Very similar to traditional NSE
 – Can also be added to a triple axis spectrometer for “phonon focusing”
 – Available at several European centers (LLB, Munich, HMI)

• Spin Echo Scattering Angle Measurement (SESAME)
 – Measure spatial correlations over large distances
 – Currently only available for SESANS at Delft
 – Several prototypes being developed in the U.S. for SESANS and SERGIS

• MIEZE
 – Energy resolved SANS
 – Not yet implemented anywhere (as far as I know) although prototype was built at IPNS
An NRSE Triple Axis Spectrometer at HMI: Note the Tilted Coils
The Principle of Neutron Resonant Spin Echo

• Within a coil, the neutron is subjected to a steady, strong field, B_0, and a weak rf field $B_1 \cos(\omega t)$ with a frequency $\omega = \omega_0 = \gamma B_0$
 - Typically, $B_0 \sim 100 \text{ G}$ and $B_1 \sim 1 \text{ G}$

• In a frame rotating with frequency ω_0, the neutron spin sees a constant field of magnitude B_1

• The length of the coil region is chosen so that the neutron spin precesses around B_1 thru an angle π.

• The neutron precession phase is:

$$\phi_{\text{neutron}} = \phi_{\text{RF}}^{\text{exit}} + (\phi_{\text{RF}}^{\text{entry}} - \phi_{\text{neutron}}^{\text{entry}})$$

$$= 2\phi_{\text{RF}}^{\text{entry}} - \phi_{\text{neutron}}^{\text{entry}} + \omega_0 d / v$$
Neutron Spin Phases in an NRSE Spectrometer*

Table 1. Spin orientation

<table>
<thead>
<tr>
<th>Time t</th>
<th>Phase field B_r</th>
<th>neutron Spin phase S</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>t_A</td>
<td>ωt_A</td>
</tr>
<tr>
<td>A'</td>
<td>$t_A' = t_A + \frac{d}{v}$</td>
<td>$\omega t_A'$</td>
</tr>
<tr>
<td>B</td>
<td>$t_B = t_A + \frac{l_{AB} + d}{v}$</td>
<td>ωt_B</td>
</tr>
<tr>
<td>B'</td>
<td>$t_B' = t_A + \frac{l_{AB} + 2d}{v}$</td>
<td>$\omega t_B'$</td>
</tr>
<tr>
<td>C</td>
<td>t_C</td>
<td>$-\omega t_C$</td>
</tr>
<tr>
<td>C'</td>
<td>$t_{C'} = t_C + \frac{d}{v}$</td>
<td>$-\omega t_{C'}$</td>
</tr>
<tr>
<td>D</td>
<td>$t_D = t_C + \frac{l_{CD} + d}{v}$</td>
<td>$-\omega t_D$</td>
</tr>
<tr>
<td>D'</td>
<td>$t_{D'} = t_C + \frac{l_{CD} + 2d}{v}$</td>
<td>$-\omega t_{D'}$</td>
</tr>
</tbody>
</table>

Echo occurs for elastic scattering when

$$l_{AB} + d = l_{CD} + d$$

* Courtesy of S. Longeville
Just as for traditional NSE, if the scattering is elastic, all neutron spins arrive at the analyzer with unchanged polarization, regardless of neutron velocity. If the neutron velocity changes, the neutron beam is depolarized.
The Measured Polarization for NRSE is given by an Expression Similar to that for Classical NSE

- Assume that \(v' = v + \delta v \) with \(\delta v \) small and expand to lowest order, giving:

\[
\langle P \rangle = \frac{\int \int I(\lambda)S(\bar{Q}, \omega) \cos(\omega \tau_{NRSE}) d\lambda d\omega}{\int \int I(\lambda)S(\bar{Q}, \omega) d\lambda d\omega}
\]

where the "spin echo time" \(\tau_{NRSE} = 2 \gamma B_0 (l + d) \frac{m^2}{2\pi h^2} \lambda^3 \)

- Note the additional factor of 2 in the echo time compared with classical NSE (a factor of 4 is obtained with “bootstrap” rf coils)

- The echo is obtained by varying the distance, \(l \), between rf coils

- In NRSE, we measure neutron velocity using fixed “clocks” (the rf coils) whereas in NSE each neutron “carries its own clock” whose (Larmor) rate is set by the local magnetic field
SESAME: Tilted Field Boundaries to Code Scattering Angles

spin polarizer

1st spin-echo arm

$+B_0$

sample position

2nd spin-echo arm

$-B_0$

spin analyser

$P=1$

DIFFERENT PATH LENGTHS FOR THE DIFFERENT TRAJECTORIES!

Viewgraph sequence by A. Vorobiev
Spin Echo Scattering Angle Measurement (SESAME)
No Sample in Beam

Spin polarizer

+\(B_0\)

sample position

-\(B_0\)

spin analyser

\[P_i = P_f \]

‘SPIN-ECHO’

ALL SPINS ARE PARALLEL: FULL POLARIZATION

ALL SPINS ARE PARALLEL AGAIN: POLARIZATION IS BACK
Spin Echo Scattering Angle Measurement (SESAME)

Scattering by the Sample

\[P_i > P_f \]
Spin Echo Scattering Angle Measurement (SESAME)
Scattering of a Divergent Beam

Spin polarizer

$+B_0$

$-B_0$

Spin analyser

P_i

P_f

the same depolarization

$P_i > P_f$

independently of initial trajectory
spin-echo angular coding

5. THE EXPERIMENT
TRANSMISSION GEOMETRY:

SPIN-ECHO SMALL ANGLE NEUTRON SCATTERING

SESANS

SAMPLE:
diluted suspension of polystyrene spheres

6. SESANS EXAMPLE-1

Autocorrelation function obtained for the polystyrene spheres (water suspension).

d = 300 nm

φ = 2.5 % vol.