Predicting Patterns in Education: Linking Theory to Practice

Theodore Frick
Department of Instructional Systems Technology
School of Education
Indiana University Bloomington

Overview
- Problems in linking theory to practice
- A different perspective for measurement and analysis: MAPSAT
- Examples of practical results from studies using MAPSAT methods
- APT for temporal patterns
- APC for structural patterns
- MAPSAT software under development

Problems in Linking Theory to Practice: Some Indicators

- Educating School Leaders (Levine, 2005): "Educational administration scholarship is ... disconnected from practice." (p. 5)
- Educating School Teachers (Levine, 2006): "Across [teacher education] programs there is a chasm between theory and practice." (p. 4)

Problems in Linking Theory to Practice: Some Indicators

- Imagine if medical doctors practiced medicine without regard to research in medical science
- Yet, apparently most teachers and administrators practice and lead P-12 education with little regard for research in education (Levine, 2005; 2006; Zirkel, 2007)
An Alternative

- My experience in Project PRIME in Texas revealed inadequacies of linear models approach (1972-1975)
- I invented Analysis of Patterns in Time (APT) to help identify predictable sequences of events that can inform educational practice (1976-1980)

MAPSAT: APT & APC

- Ken Thompson developed Analysis of Patterns in Configurations (APC) from Axiomatic Theories of Intentional Systems (ATIS) to measure structural properties (2006)
- APT & APC now called MAPSAT: Map & Analyze Patterns & Structures Across Time

MAPSAT Methods

- Basic assumption:
 Observed events can be mapped into categories in classifications.
- Major difference:
 Measure the relation vs. relate the measures.

Examples of Studies Using MAPSAT Methods

- Teaching and learning quality
- Activity structures in a Montessori class
- Patterns of mode errors by computer users of graphical interfaces
- Computer-Adaptive Mastery Testing
- Academic learning time

Teaching and Learning Quality

(Frick, Chadha, Watson, Wang & Green, 2007)

- Is there a relation between student ratings of college courses and learning achievement?
- Can we create better course evaluation instruments which are more strongly related to student learning achievement?
Teaching and Learning Quality
(Frick, Chadha, Watson, Wang & Green, 2007)

First Principles of Instruction (Merrill, 2002)
- **Authentic Problems/Tasks**: students engage in real-world, authentic problems or tasks
- **Activation**: student prior learning or experience is connected to what is to be newly learned
- **Demonstration**: students are exposed to examples of what they are expected to learn or do
- **Application**: students try out what they have learned, with instructor coaching, scaffolding or feedback
- **Integration**: students incorporate what they have learned into their own personal lives

Learning Progress: student self-perception of how much she or he has learned (cf. Cohen, 1981) (indicator of Kirkpatrick Level 2 evaluation)
Student Satisfaction: with course and instructor (Kirkpatrick Level 1 evaluation)
Overall course/instructor quality (Cohen, 1981; BEST items 1-3)

Web survey of 193 respondents from multiple institutions (2/3 not at IU IP numbers)
At least 111 different courses and instructors rated in a wide range of subjects in business, medical sciences, liberal arts, education, and information technology
About 2/3 undergraduate and 1/3 graduate level
Undergrads represented fairly evenly from freshmen through seniors
Scale reliabilities very high: .82 to .97 (Cronbach α’s)

APT Results for the Pattern: If ALT and First Principles, then Outstanding Instructor/Course

<table>
<thead>
<tr>
<th>ALT Agreement</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined/First Principles Agreement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>31</td>
<td>4</td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

Global Rating Agreement Count
- No: 31
- Yes: 12

Mastery Level Count
- Nonmastery: 14
- Partial: 19
- Mastery: 20

Summary: If students agreed that both First Principles and ALT occurred (vs. disagreed):
- They were 9 times more likely to rate a course and instructor as outstanding.
- They were 5 times more likely to report mastery of course objectives.
Student Autonomy Support and Activity Structures in a Montessori Class
(Koh & Frick, 2007)

- Case study of upper elementary Montessori classroom in Spring 2006
- Ethnographic field notes collected (10 observations about 1 hr. each)
- Two major types of activity structures:
 - Head problems (in math)
 - Morning work period (Montessori works)

Head Problems: teacher-created math problems given to whole class to work on individually (about 1 hr.)

Morning Work Period: students choose individual Montessori works from classroom learning environment (about 3 hrs.)

Affect Relation: ordered pair in set theory, with a predicate: \(P(x,y) \).

Components \(x \) and \(y \) could be individual teachers, students, works (Montessori designed), computers, etc.

‘Support’ affect relation \((x,y) \): \(x \) supports the learning of \(y \)

‘Choice’ affect relation \((x,y) \): \(x \) chooses learning activity \(y \)

18 structural properties of affect relation sets:
- Active dependence
- Centrality
- Complexity
- Independence
- Interdependence
- Complete connectivity
- Etc.

Analysis of Patterns in Configurations: ‘Support’ affect relations

Example of ‘Support’ affect relations

\(\{s1,s2\} \) (s2,s1)(t2,s1)
Patterns of Mode Errors in Human-Computer Interaction (An, 2003)

- Mixed methods approach
- 16 college students performed 8 computer tasks with 3 modern GUI interfaces (word processor, address book, image editor).
- Participants were videotaped, and stimulated-recall interviews conducted immediately afterwards.
- Content analysis revealed 3 types of mode errors.

Patterns of Mode Errors in Human-Computer Interaction (An, 2003)

- Source of error analysis revealed that mode errors appeared to result from 8 types of design incongruity:
 - Unaffordance
 - Invisibility
 - Misled expectation
 - Unmet expectation
 - Mismatched expectation
 - Inconsistency
 - Unmemorability
 - Over-automation

Patterns of Mode Errors in Human-Computer Interaction (An, 2003)

- Consequences of mode errors:
 - Can't find hidden function
 - Can't find unavailable function
 - False success
 - Stuck performance
 - Inhibited performance
 - Inefficient performance

Computer-Adaptive Mastery Testing (Frick, 1992)

- Item Response Theory (IRT) requires 500 – 1000 examinees to estimate a, b, and c parameters before CAT can be used
- IRT not practical for mastery testing in instructional settings
- Can we still do CAT effectively by another approach?
- What if APT is used to form expert systems rules (in contrast to ICC in IRT)?
Computer-Adaptive Mastery Testing (Frick, 1992)

Use APT to form 4 rules (patterns) for each test item - needed about 50 examinees (25 masters and 25 nonmasters) for stable estimates

- Rule i.1: If the examinee is a master and item i is selected, then the probability of a correct response is \(P(C_i | M) \).
- Rule i.2: If the examinee is a master and item i is selected, then the probability of an incorrect response is \(P(\neg C_i | M) \).
- Rule i.3: If the examinee is a nonmaster and item i is selected, then the probability of a correct response is \(P(C_i | \neg M) \).
- Rule i.4: If the examinee is a nonmaster and item i is selected, then the probability of an incorrect response is \(P(\neg C_i | \neg M) \).

EXSPRT with APT rules can do intelligent item selection and shorten length of mastery tests
EXSPR-based CAT similar to IRT-based CAT in terms of test lengths and decision accuracy (Frick, 1990; 1992; Welch & Frick, 1993; Luk, 1994)
EXSPRT more practical in instructional settings, since only 50 examinees are needed vs. 500-1000 for IRT item parameter estimation

Nov. 7, 2007 Predicting Patterns in Education 31

Academic Learning Time Study (Frick, 1990; 1983)

- 25 systems observed in central and southern Indiana
- Tracked 25 target students in academic activities over several months for 8-10 hours each
- Trained observers coded types of academic learning contexts, task difficulty and task success
- Observers also coded student and instructor behaviors in math and reading (about 500 time samples at one-minute intervals for each target student)
- Nearly 15,000 time moments sampled overall

What observers coded in math and reading activities each minute

- Types of student engagement: written, oral, and covert on-task; off-task behaviors (later recoded as engagement, EN, and non-engagement, NE)
- Types of instructor behaviors: structuring, explaining, demonstrating, questioning, feedback (later recoded as direct instruction, DI), and monitoring academic seatwork (non-direct instruction, ND)

Nov. 7, 2007 Predicting Patterns in Education 32

Standard analysis: columns 1 and 2: independent measures of DI and of EN were correlated (n = 25)

<table>
<thead>
<tr>
<th>(p(DI))</th>
<th>(p(EN))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.39</td>
<td>0.60</td>
</tr>
<tr>
<td>0.39</td>
<td>0.60</td>
</tr>
<tr>
<td>0.37</td>
<td>0.62</td>
</tr>
<tr>
<td>0.32</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Mean (SD)

Linear Models Approach

- Linear models approach (quantitative method):
 - Relates independent measures through a mathematical function
 - Treats deviation from model as error variance

Nov. 7, 2007 Predicting Patterns in Education 33

Nov. 7, 2007 Predicting Patterns in Education 34

Nov. 7, 2007 Predicting Patterns in Education 35

Nov. 7, 2007 Predicting Patterns in Education 36
Linear Models Approach cont’d

Analysis of Patterns in Time

- APT measures a relation directly by counting occurrences of when a temporal pattern is true or false in observational data
- Probability of joint or sequential occurrence can be estimated for a pattern from the counts

APT Results

- Means and standard deviations for the relations
- Mean $p(EN \mid DI) = 0.967$ s.d. = 0.029
- Mean $p(EN \mid ND) = 0.573$ s.d. = 0.142
- When direct instruction is occurring, students are highly engaged.
- When non-direct instruction is occurring they are less engaged.
- Students were 13 times more likely to be off-task during non-direct instruction compared with direct instruction: $(1 - 0.573) / (1 - 0.967) = 12.94$.

LMA vs. APT

- Linear models relate the independent measures by a function for a line:
 - e.g., $EN = 0.57 + 0.40DI$
- APT measures the relation in terms of joint, conditional, or sequential occurrence:
 - e.g., $p(EN \mid DI) = 0.967$
 - e.g., $p(EN \mid ND) = 0.573$

\[DI = \text{direct instruction}, \quad EN = \text{student engagement}, \quad ND = \text{non-direct instruction} \]
APT: Analysis of Patterns in Time

How it works

APT Methodology: sequential occurrence
- When one event precedes another, and when observers code the order in which events occur:
 - APT can estimate the probability of the consequent following the antecedent event.
 - APT can estimate likelihoods of sequences longer than two (unlike Markov chains).
 - APT can estimate both joint and sequential event occurrences in complex combinations.

APT Coding (temporal configuration)

<table>
<thead>
<tr>
<th>Clock Time</th>
<th>Target</th>
<th>Instruction</th>
<th>Student Engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:01</td>
<td>Mona</td>
<td>Direct</td>
<td>Off-task</td>
</tr>
<tr>
<td>9:02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:06</td>
<td></td>
<td></td>
<td>Off-task</td>
</tr>
<tr>
<td>9:07</td>
<td></td>
<td></td>
<td>On-task</td>
</tr>
<tr>
<td>9:08</td>
<td></td>
<td>Non-Direct</td>
<td></td>
</tr>
<tr>
<td>9:10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:11</td>
<td></td>
<td></td>
<td>Off-task</td>
</tr>
<tr>
<td>9:12</td>
<td></td>
<td>Null</td>
<td>Null</td>
</tr>
</tbody>
</table>

APT Classifications and Categories
- Each column is a classification
- Classifications co-exist in time
- Categories of events within a classification cannot co-exist in time (since they are mutually exclusive, by definition)
- An observer codes event changes within each classification in the order that they occur.
- Date/time is always a classification and is recorded whenever there is an event change.

Example of sequential coding with three classifications

<table>
<thead>
<tr>
<th>Clock Time</th>
<th>Target</th>
<th>Instruction</th>
<th>Student Engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:01</td>
<td>Mona</td>
<td>Direct</td>
<td>Off-task</td>
</tr>
<tr>
<td>9:02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:06</td>
<td></td>
<td></td>
<td>Off-task</td>
</tr>
<tr>
<td>9:07</td>
<td></td>
<td></td>
<td>On-task</td>
</tr>
<tr>
<td>9:08</td>
<td></td>
<td>Non-Direct</td>
<td></td>
</tr>
<tr>
<td>9:10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:11</td>
<td></td>
<td></td>
<td>Off-task</td>
</tr>
<tr>
<td>9:12</td>
<td></td>
<td>Null</td>
<td>Null</td>
</tr>
</tbody>
</table>

APT Query: IF target student IS Mona?

<table>
<thead>
<tr>
<th>Clock Time</th>
<th>Target</th>
<th>Instruction</th>
<th>Student Engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:01</td>
<td>Mona</td>
<td>Direct</td>
<td>Off-task</td>
</tr>
<tr>
<td>9:02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:06</td>
<td></td>
<td></td>
<td>Off-task</td>
</tr>
<tr>
<td>9:07</td>
<td></td>
<td></td>
<td>On-task</td>
</tr>
<tr>
<td>9:08</td>
<td></td>
<td>Non-Direct</td>
<td></td>
</tr>
<tr>
<td>9:10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:11</td>
<td></td>
<td></td>
<td>Off-task</td>
</tr>
<tr>
<td>9:12</td>
<td></td>
<td>Null</td>
<td>Null</td>
</tr>
<tr>
<td>9:13</td>
<td></td>
<td>Null</td>
<td>Null</td>
</tr>
</tbody>
</table>
APT Query and Results

Query

IF target student IS Mona?

Results

Cumulative duration = (9:13 - 9:01) = 12 minutes
Cumulative frequency = 1 event
Likelihood = 1 out of 1 relevant event changes = 1.00
Proportion time = 12 minutes out of 12 = 1.00

APT Query Results

Query

IF target student IS Mona AND instruction IS direct?

Results

Cumulative duration = (9:08 - 9:01) = 7 minutes
Cumulative frequency = 1 event
Likelihood = 1 out of 2 relevant event changes = 0.50
Proportion time = 7 minutes out of 12 = 0.583

APT Query Results

Query

IF target student IS Mona AND instruction IS direct, THEN student engagement IS on-task?

Results

Cumulative duration = (9:06 - 9:03) + (9:08 - 9:07) = 4 minutes
Cumulative frequency = 2
Likelihood = 2 out of 4 = 0.50
Proportion time = 4 minutes out of 6 = 0.667

APT Query Syntax
APT Syntax (cont’d)

APT Query Syntax

- Thus, simple to very complex temporal patterns can be specified within APT queries.
- Joint and/or sequential occurrences of events can be specified.
- Results include frequency counts, likelihood estimates, durations and proportions of total time.

APC: Analysis of Patterns in Configuration

Familiar Patterns: Structural

- Geographical relation:
 - Bloomington is south of Indianapolis.
 - Martinsville is south of Indianapolis.
- Organizational relation:
 - Gerardo Gonzalez is University Dean of the School of Education who supervises:
 - Peter Kloosterman, Executive Associate Dean, SoE, IUB campus
 - Khaula Murtahda, Executive Associate Dean, SoE, IUPUI campus
Affect relation set: guides research of

Professor Reigeluth

Professor Boling

Kurt

Sunny

Marisa

Nichole

Old IST Ph.D. structure

Affect relation set: guides research of

Professor Reigeluth

Professor Boling

Kurt

Sunny

Marisa

Nichole

New IST Ph.D. structure

APC allows us to measure structural properties of digraphs

<table>
<thead>
<tr>
<th>Property</th>
<th>Count</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Dependence</td>
<td>1.00 paths</td>
<td>5.97</td>
</tr>
<tr>
<td>Centrality</td>
<td>4.00 paths</td>
<td>21.89</td>
</tr>
<tr>
<td>Compactness</td>
<td>9.00 paths</td>
<td>51.76</td>
</tr>
<tr>
<td>Complete Connectedness</td>
<td>0.00 paths</td>
<td>0.00</td>
</tr>
<tr>
<td>Complexity</td>
<td>5.00 paths</td>
<td>5.00</td>
</tr>
<tr>
<td>Etc.</td>
<td>Etc.</td>
<td>Etc.</td>
</tr>
</tbody>
</table>

Structural Property Definition

Example: Interdependence

\[\text{Interdependence} = \sum_{i=1}^{n} \sum_{j=1}^{n} \left| \text{init}(i,j) \cap \text{recep}(i,j) \right| \]

Egads – this could be very tedious and hard to do by hand!

MAPSAT Software for Researchers

- Create your own classifications and categories
- Code temporal events and affect relations
- Analyze temporal sequences
- Analyze structural properties
MAPSAT: Map & Analyze Patterns & Structures Across Time

Summary

MAPSAT Summary
- Basic assumption: Observed events can be mapped into categories in classifications.
- Major difference: Measure (or Map) the relation vs. relate the measures.
- MAPSAT includes APT and APC methods

MAPSAT Summary
- The value of MAPSAT methods was illustrated by results from five empirical studies.
- These results have direct implications for practice.
- Software is under development to do MAPSAT.

Questions
For more information on MAPSAT and references for past research studies:

http://www.indiana.edu/~tedfrick